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The ratio of revenue to inputs differs greatly across plants within countries such as the 

U.S. and India. Such gaps may reflect misallocation which lowers aggregate productivity. 

But differences in measured average products need not reflect differences in true marginal 

products. We propose a way to estimate the gaps in true marginal products in the presence 

of measurement error. Our method exploits how revenue growth is less sensitive to input 

growth when a plant’s average products are overstated by measurement error. For Indian 

manufacturing from 1985 to 2013, our correction lowers potential gains from reallocation 

by 20%. For the U.S. the effect is even more dramatic, reducing potential gains by 60% and 

eliminating 2/3 of a severe downward trend in allocative efficiency over 1978 to 2013. 
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1. Introduction 

The ratio of revenue to inputs differs substantially across establishments and firm within narrow industries in the U.S. 

and other countries ( Syverson, 2011 ). One interpretation of such gaps is that they reflect differences in the value of marginal

products for capital, labor, and intermediate inputs — misallocation with negative consequences for aggregate productiv- 

ity. This point has been driven home by Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) . See Hopenhayn

(2014) and Restuccia and Rogerson (2017) for surveys of the growing literature surrounding this topic. 

Differences in measured average products need not imply differences in true marginal products. First, marginal products 

are proportional to average products only under Cobb-Douglas production. Second, measured differences in revenue over 

inputs could simply reflect poor measurement. This could stem from omitted or double-counted revenue or inputs from 

different divisions or products within the firm, such as in relation to headquarters. Moreover, there could be transitory 

mismeasurement from classifying some revenue or inputs in an adjacent year to when it actually occurred. 1 
� We are grateful to Joel David and Diego Restuccia for helpful discussions. Any opinions and conclusions expressed herein are those of the author(s) 

and do not necessarily represent the views of the U.S. Census Bureau, the IMF, its Executive Board, or its management. This research was performed at a 

Federal Statistical Research Data Center under FSRDC Project 1440. All results have been reviewed to ensure that no confidential information is disclosed. 
∗ Corresponding author. Department of Economics, Stanford University, 579 Jane Stanford Way Stanford, CA 94305 Tel.: 650-725-3266. 

E-mail address: klenow@stanford.edu (P.J. Klenow). 
1 See White et al. (2018) for how the U.S. Census Bureau tries to correct for measurement errors in its survey data on manufacturing plants. Rotemberg 

and White (2020) argue that the use of imputation in the U.S. but (perhaps) not in India could account for why allocative efficiency seems higher in 

the U.S. than in India. Bartelsman et al. (2013) and Asker et al. (2014) discuss why revenue productivity need not reflect misallocation even aside from 

measurement error, due to overhead costs and adjustment costs, respectively. 
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We propose and implement a method to quantify the extent to which measured average products reflect true marginal 

products in the presence of measurement error. Our method is able to detect measurement error in revenue and inputs 

which is additive but whose variance can scale up with the plant’s true revenue and inputs. Omitted revenue or inputs from

products could take this form, for example, if the revenue from a firm’s different products is not well correlated. Our method

cannot identify proportional measurement error, and therefore may yield a lower bound on the magnitude of measurement 

error. 

The intuition for our method is as follows. Imagine a world with constant (proportional) differences in true marginal 

products. The only shocks are to idiosyncratic plant productivity. Productivity shocks will move true revenue and inputs 

around across plants in the same proportion. 2 Thus, in the absence of measurement error, revenue growth will be propor-

tional to input growth across all plants. Now suppose, instead, that revenue is overstated for a given plant. If this measure-

ment error is additive and fixed over time, then the plant’s measured revenue will move by less in percentage terms in

response to a change in its productivity. Similarly, if a plant has overstated inputs in an additive and fixed way, its mea-

sured inputs will move less than proportionately in response to productivity shocks. Thus, if a plants revenue/inputs are 

overstated by measurement error, its measured revenue growth will be less responsive to its measured input growth. We 

can then gauge the importance of measurement error in the cross-section by the degree to which high average product 

plants exhibit a low elasticity of revenue growth with respect to input growth. 

Our method applies to less stark environments with changing true marginal products and measurement error over time 

for plants. A key restriction we do require is that the measurement errors be orthogonal to the true marginal products. Our

approach involves regressing revenue growth on input growth within deciles of plants in terms of their average products. 

The extent to which the coefficients decrease with the decile (level) of TFPR speak to how much measurement error is

contributing to the dispersion in measured average products in the cross-section. 

We apply our method to panel data on manufacturing plants in the U.S. (1978–2013) and India (1985–2013). We examine 

about 50,0 0 0 plants per year in the U.S. Annual Survey of Manufacturers (ASM) from the Longitudinal Research Database

(LRD). In India we look at about 43,0 0 0 plants per year from their Annual Survey of Industries (ASI). 

We first report estimates of allocative efficiency without correcting for measurement error. The U.S. exhibits a severe 

decline, seemingly going from producing 3/5 as much as it could by equalizing marginal products across plants to producing 

only 1/3 as much as it could. If true, this plunge reduced the annual TFP growth rate by 1.7 percent per year over 1978–

2013. By comparison, we estimate that Indian manufacturing operated at about 1/2 efficiency, with a fair bit of volatility 

from year to year but no clear trend despite major policy reforms. Thus by the end of the sample the U.S. appears to have

lower allocative efficiency than India. 

Once we correct for measurement error, U.S. allocative efficiency is much higher (above 2/3) with a modest downward 

trend and much less volatility. Measurement error appears to be a growing problem in Census LRD plant data. In the Indian

ASI, correcting for measurement error has a less dramatic effect. As a result, corrected allocative efficiency appears con- 

sistently higher in the U.S., raising manufacturing productivity by 10 to 50 percent relative to that in India (in all but one

year). 

Our results imply that sluggish TFP growth in U.S. manufacturing in recent decades does not seem to be driven by

declining allocative efficiency. One must look elsewhere for explanations, such as falling innovation rates. To the extent that 

slow growth has contributed to low risk-free real interest rates, a corollary of our findings is that such returns do not appear

to be low because of low allocative efficiency, at least in manufacturing. 

The rest of the paper proceeds as follows. Section 2 presents a simple model wherein both measurement error and

distortions are fixed over time. Section 3 presents the full model, which allows both measurement error and distortions to 

change over time. Section 4 describes the U.S. and Indian datasets, and raw allocative efficiency patterns in the absence of

our correction for measurement error. Section 5 lays out our method for quantifying measurement error, and applies it to 

the panel data on manufacturing plants in the U.S. and India. As stated, these estimates impose the strong assumption that

measurement error and true productivity are uncorrelated. We also rely on local approximations, so in Section 6 we examine

how well our measure performs under alternative assumptions on the properties of shocks to productivity, distortions, and 

measurement error. Section 7 shows how correcting for measurement error affects the picture of allocative efficiency in the 

U.S. and India. 

2. An illustrative model 

In order to convey intuition for our methodology, we first present a simple model. We assume the economy has a fixed

number of workers L and a single, competitive final goods sector producing aggregate output Y . Aggregate output is, in turn,
2 Output increases more than inputs in response to a productivity shock, of course. But a plant’s relative output price will decline with productivity so 

that its revenue will rise by the same proportion as its inputs. This is true if the plant’s price-cost markup, or true ratio of revenue to inputs, does not 

change with its productivity. 
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produced by CES aggregation of the output Y i of N intermediate goods producers with elasticity of substitution ε: 

Y = 

( 

N ∑ 

i =1 

Y 
1 − 1 

ε

i 

) 

1 

1 − 1 
ε

. (1) 

The price index of the final good is given by P = 

(∑ 

i P 
1 −ε
i 

) 1 
1 −ε and is normalized to 1. Intermediate firms produce output

using a linear production technology in labor under heterogeneous productivities: Y i = A i L i . These firms are monopolistically

competitive and face a downward sloping demand curve: Y i ∝ P −ε
i 

. They maximize profits taking as given Y , P , the wage w ,

and an idiosyncratic revenue distortion τi : 

�i = 

1 

τi 

P i Y i − wL i . (2) 

The researcher observes only measured revenue ̂ P i Y i ≡ P i Y i + g i and measured labor ̂ L i ≡ L i + f i . Given the assumed CES

demand structure, firms charge a common markup over their marginal cost (gross of the distortion): 

P i = 

(
ε

ε − 1 

)
×

(
τi ·

w 

A i 

)
. (3) 

True revenue is therefore proportional to the product of true labor times and the idiosyncratic distortion: 

P i Y i ∝ τi · L i . (4) 

Thus variation across firms in true average revenue products 

(
P i Y i 
L i 

)
is solely due to the distortion. Variation in measured 

average revenue products (TFPR), however, reflects both the distortion and measurement errors: 

TFPR i ≡
̂ P i Y i ̂ L i 

∝ 

[
τi ×

1 + g i / (P i Y i ) 

1 + f i /L i 

]
. (5) 

Our methodology will allow both the true distortions and the measurement errors to vary over time. But to convey intuition,

we make a number of simplifying assumptions in this section: 

1. The true distortions τi are fixed over time 

2. The additive measurement error terms g i and f i are fixed over time 

3. The idiosyncratic productivities A it are time-varying 

Under these assumptions, 

�P i Y i = �L i = ( ε − 1 ) �A i . (6) 

Thus true revenue growth equals true input growth for a given plant. Therefore, regressing revenue growth on input growth 

should yield a coefficient of 1 independently of a plant’s level of TFPR. 

In the presence of measurement error, however, the relation between measured revenue and input growth in this econ- 

omy is, for small �A i , 

�̂ P Y i = �̂ L i ·
τi 

TFPR i 

. (7) 

The higher is TFPR relative to the true distortion τ , the lower is revenue growth relative to input growth. To the extent

measurement errors, not true distortions, drive TFPR differences, the estimated elasticity of plant revenue growth on input 

growth will be predictably lower for plants with higher TFPR. 

In Section 5 we will generalize this logic to allow for shocks to both measurement error and distortions. The intuition

from this simple example will remain: the extent to which high TFPR plants exhibit a low elasticity of revenue with respect

to inputs will help us to estimate the role of measurement error in TFPR dispersion. 3 We will use this, in turn, to estimate

the variance of the true distortion and therefore the true level of allocative efficiency. In the next section we present the

full model and a decomposition of aggregate and sectoral TFP into allocative efficiency vs. other terms. 

3. Model 

We now generalize our illustrative model to allow for capital and for multiple sectors. We show how aggregate TFP 

reflects cross-sector distortions as well as the individual sectors’ TFPs, then how each sector’s TFP reflects its particular set 

of distortions. 
3 In an earlier version of this paper, we used a regression equation close to (7) , specifically, we regressed revenue growth on input growth, TFPR, and the 

interaction of input growth and TFPR across plants. The coefficient on the interaction term provided direct information on the extent of TFPR dispersion 

due to measurement error. This approach works well except in cases where measurement error is a large fraction of all TFPR dispersion, but is still a useful 

diagnostic. 
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3.1. Economic environment 

We consider an economy with S sectors, L workers and an exogenous capital stock K. There are an exogenous number of

firms N s operating in each sector. A representative firm produces a single final good Q in a perfectly competitive final output

market. This final good is produced using gross output Q s from each sector s with a Cobb-Douglas production technology: 

Q = 

S ∏ 

s =1 

Q 

θs 
s where 

S ∑ 

s =1 

θs = 1 . (8) 

We normalize P , the price of the final good, to 1. The final good can either be consumed or used as an intermediate input: 

Q = C + X. (9) 

All firms use the same intermediate input, with the amounts denoted X si so that X ≡ ∑ S 
s =1 X s = 

∑ S 
s =1 

∑ N s 
i =1 

X si . 

Sectoral output Q s is a CES aggregate of the outputs of the N s sector- s firms: 

Q s = 

( 

N s ∑ 

i =1 

Q 

1 − 1 
ε

si 

) 

1 

1 − 1 
ε

. (10) 

We denote by P s the price index of output from sector s . Firms have idiosyncratic productivity draws A si , and produce output

Q si using a Cobb-Douglas technology in capital, labor and intermediate inputs: 

Q si = A si (K 

αs 

si 
L 1 −αs 

si 
) γs X 

1 −γs 

si 
where 0 < αs , γs < 1 . (11) 

The output elasticities αs and γs are sector-specific, but time-invariant and common across firms within a sector. Firms are 

monopolistically competitive and face a downward sloping demand curve given by Q si = Q s 

(
P si 
P s 

)−ε

. Firms treat P s and Q s as

exogenous. Firms also face idiosyncratic labor distortions τ L 
si 

, capital distortions τ K 
si 

and intermediate input distortions τ X 
si 

. 

They maximize profits �si taking input prices as given. 

�si = R si − (1 + τ L 
si ) wL si − (1 + τ K 

si ) rK si − (1 + τ X 
si ) P X si , (12) 

where R si ≡ P si Q si is firm revenue. 

3.2. Aggregate TFP 

We define aggregate TFP as aggregate real consumption (or equivalently value-added) divided by an appropriately 

weighted Cobb-Douglas bundle of aggregate capital and labor: 

T F P ≡ C 

L 1 −˜ αK ̃

 α
where ˜ α ≡

∑ S 
s =1 αs γs θs ∑ S 

s =1 γs θs 

. (13) 

We show in our Online Appendix that 

T F P = T ×
S ∏ 

s =1 

T F P 

θs ∑ S 
s =1 

γs θs 

s . (14) 

T captures the effect of the sectoral distortions τ L 
s , τ

K 
s and τ X 

s , which are the revenue-weighted harmonic means of the 

idiosyncratic firm-level distortions. 4 Sectoral TFP is then: 

T F P s ≡ Q s 

(K 

αs 
s L 1 −αs 

s ) γs X 

1 −γs 

s 

. (15) 

Within-sector misallocation lowers T F P s . Meanwhile, sectoral distortions will induce a cross-sector misallocation of re- 

sources which will show up in T . While cross-sector misallocation is of interest, it is not the focus of this paper. We there-

fore leave it to future research to determine how important this could be in determining cross-country aggregate TFP gaps. 

3.3. Sectoral TFP decomposition 

Sector-level TFP is a function of firm-level productivities and distortions: 

T F P s = 

[ 

N s ∑ 

i =1 

A 

ε−1 
si 

(
τsi 

τs 

)1 −ε
] 

1 
ε−1 

, (16) 
4 (1 + τ L 
s ) ≡

[ ∑ N s 
i =1 

R si 

R s 
1 

1+ τ L 
si 

] −1 

and similarly for ( 1 + τ K 
s ) and ( 1 + τ X 

s ). The Online Appendix expresses sectoral distortions as a function only of firm 

distortions and productivities. 
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where τsi ≡
[ (

1 + τ L 
si 

)1 −αs 
(
1 + τ K 

si 

)αs 

] γs (
1 + τ X 

si 

)1 −γs 
, (17) 

and τs ≡
[ (

1 + τ L 
s 

)1 −αs 
(
1 + τ K 

s 

)αs 

] γs (
1 + τ X 

s 

)1 −γs 
. (18) 

We can go one step further, and decompose sectoral TFP into the product of four terms: allocative efficiency ( AE s ), a

productivity dispersion term ( P D s ), average productivity ( A s ), and a variety term ( N 

1 
ε−1 

s ). 

T F P s = 

[ 

1 

N s 

N s ∑ 

i 

(
A si ˜ A s 

)ε−1 (
τsi 

τs 

)1 −ε
] 

1 
ε−1 

︸ ︷︷ ︸ 
AE s = Allocative Efficiency 

×
[ 

1 

N s 

N s ∑ 

i 

(
A si 

A s 

)ε−1 
] 

1 
ε−1 

︸ ︷︷ ︸ 
PD s = Productivity Dispersion 

× N 

1 
ε−1 

s ︸︷︷︸ 
Variety 

× A s ︸︷︷︸ 
Ave. Productivity 

. (19) 

˜ A is the power mean of idiosyncratic productivities, 
[

1 
N s 

∑ N s 
i =1 ( A si ) 

ε−1 
] 1 

ε−1 , and A is the geometric mean of idiosyncratic 

productivities 
∏ N s 

i =1 
A 

1 
N s 
si 

. AE s is maximized and equal to 1 when there is no variation in the distortions across firms ( τsi = τs 

∀ i ). The productivity dispersion term ( P D s ) is the ratio of the power mean to the geometric mean. Because ε > 1 , greater

dispersion in firm-level productivities induces a reallocation of labor towards the most productive firms, thereby increasing 

sectoral TFP. N 

1 
ε−1 

s captures the productivity gains from expanding the set of varieties available to sectoral goods producers. 

Finally, it is clear why increases in average productivity ( A s ) should increase sectoral TFP. 

4. Inferring Allocative Efficiency 

Our goal is to present a methodology for inferring allocative efficiency ( AE s ) from plant-level data while allowing for

measurement error. In this section we briefly describe the U.S. and Indian datasets we use, present the model-based ap- 

proach to inferring allocative efficiency in the absence of measurement error, and show raw allocative efficiency patterns in 

the data. 

4.1. Datasets 

We use two datasets of manufacturing plants in this paper: the Indian Annual Survey of Industries (ASI) from 1985 to

2013 and the U.S. Longitudinal Research Database (LRD) from 1978 to 2013. We look at plants rather than firms for two

reasons. First, the Indian data only provides information on plants, not firms. Second, the U.S. and India results in Hsieh and

Klenow (2009) are a key point of comparison, and these are done at the plant level. See Giroud et al. (2018) and Kehrig and

Vincent (2020) for evidence on revenue productivity dispersion across plants within firms. 

The ASI is a nationally representative survey of formal manufacturing plants in India. The coverage includes plants with 

at least 10 workers using power, and plants with at least 20 workers not using power. Plants fall into two categories: Census

and Sample . Census plants are surveyed every year, and consist of plants with at least 100 workers (the threshold increases

to 200 workers in some survey years) as well as all plants in 12 of the “industrially backwards” states. Sample plants are

randomly sampled each year within state × industry cells. Official panel identifiers are available from 1998 on, and we 

use panel identifiers from an old version of the publicly available ASI prior to 1998. We construct an industry classification

consisting of 50 manufacturing industries which are consistently defined throughout our time period. 5 

The LRD is a database of U.S. manufacturing plants put together by the U.S. Census Bureau. The coverage is all manufac-

turing plants with at least one employee. The database includes information from the Annual Survey of Manufactures (ASM) 

and the Census of Manufactures (CMF), augmented with establishment identifiers from the Longitudinal Business Database 

(LBD). The CMF is a census which is conducted in years ending in 2 or 7. The ASM is a survey which is conducted in all

other years. The ASM covers large plants with certainty (typically plants with at least 100 workers, though the threshold 

varies by survey year) and randomly samples smaller plants. The ASM sample is redrawn in years ending in 4 and 9. In

order to avoid any large changes in sample size over time, we use only the ‘ASM’ sample plants in CMF years. From here

on, we refer to our U.S. dataset as the LRD. We use the harmonized sectoral classification from Fort and Klimek (2016) at

the NAICS 3-digit level (86 sectors). 

The main variables we use are gross output, labor costs, capital, inventories, and intermediate inputs. We construct gross 

output as the sum of shipments, changes in finished and semi-finished good inventories, and other revenues. We construct 

intermediate inputs as the sum of materials, fuels and other expenditures. We include unpaid family workers in our measure 

of labor in India. We construct labor costs as the sum of wages, salaries, bonuses and supplemental labor costs. We set
5 The official sectoral classification (NIC) changed in 1987, 1998, 20 04 and 20 08. We use official NIC concordances to construct our harmonized classifi- 

cation. 
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the capital stock as the sum of fixed assets and the stock of inventories. 6 Official sampling weights are used in all of our

calculations. We discuss more details about variable construction in our Online Appendix . 

We clean the ASI and LRD using the same approach. We drop plants with missing or negative values for any of the

variables described above. We then trim the 1% tails of TFPR and TFPQ deviations from the industry average in each year

(TFPR and TFPQ are defined in the next section). We describe these steps in more detail in our Online Appendix . Our final

sample sizes are 1,806,0 0 0 plant-years for the U.S. and 943,186 plant-years for India. 7 

4.2. Inferring allocative efficiency 

Continuing to use ̂  ’s to denote measured values, TFPR and TFPQ are: 

TFPR si ≡
̂ R si 

( ̂  K 

αs 

sit ̂
 L 1 −αs 

si 
) γs ̂  X 

1 −γs 

si 

, (20) 

TFPQ si ≡
(̂ R sit 

) ε
ε−1 

( ̂  K 

αs 

si ̂
 L 1 −αs 

si 
) γs ̂  X 

1 −γs 

si 

. (21) 

In the absence of measurement error, TFPR would be proportional to the distortion and TFPQ would be proportional to 

productivity: 

R si 

(K 

αs 

si 
L 1 −αs 

si 
) γs X 

1 −γs 

si 

∝ τsi and 

( R si ) 
ε

ε−1 

(K 

αs 

si 
L 1 −αs 

si 
) γs X 

1 −γs 

si 

∝ A si . (22) 

We infer sectoral allocative efficiency using the following expression: 

̂ AE s = 

[ 

N s ∑ 

i =1 

(
TFPQ si 

TFPQ s 

)ε−1 (TFPR si 

TFPR s 

)1 −ε
] 

1 
ε−1 

, (23) 

where TFPQ s = 

[ 

N s ∑ 

i =1 

TFPQ 

ε−1 
si 

] 

1 
ε−1 

, (24) 

and TFPR s = 

(
ε

ε − 1 

)[
MRPL s 

(1 − αs ) γs 

](1 −αs ) γs 
[

MRPK s 

αs γs 

]αs γs 
[

MRPX s 

1 − γs 

]1 −γs 

. (25) 

MRPL s , MRPK s and MRPX s are the revenue-weighted harmonic mean values of the marginal products of labor, capital and 

intermediates, respectively. E.g., 

MRPK s = 

[ ∑ 

i 

̂ R si ̂ R s 

1 

MRPK si 

] −1 

, (26) 

MRPK si = 

(
ε − 1 

ε

)
αs γs ̂

 R si ̂ K si 

. (27) 

Aggregating across sectors we obtain inferred aggregate allocative efficiency, which is equal to true allocative efficiency 

when there is no measurement error: 

̂ AE t = 

S ∏ 

s =1 ̂

 AE 

θst ∑ S 
s =1 

γs θst 

st . (28) 

In order to obtain estimates of allocative efficiency over time for the U.S. and India we need to pin down a number of

parameters in the model. Based on evidence from Redding and Weinstein (2019) , we pick a value of ε = 4 for the elasticity

of substitution across plants. Allocative inefficiencies are amplified under higher values of this elasticity. We infer αs and γs 
6 Because of data availability, we use the nominal book value of fixed assets in India, and the real market value of fixed assets in the U.S. Book value 

capital stocks are not reported every year in the U.S., unlike investment in fixed assets. Our real capital stock measure is constructed using the perpetual 

inventory method. We do not deflate any nominal variables. Industry-level deflators would difference out because all of our analyses focus on within- 

industry differences across plants. 
7 We round U.S. observation counts in accordance with Census data disclosure rules. 
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Fig. 1. Allocative Efficiency in India and the U.S. Source: Indian ASI and U.S. LRD. The top figures show the % allocative efficiency for both countries. Average 

allocative efficiency is 48% in both India and the U.S. over the respective sample periods. The bottom figure plots the ratio of U.S. allocative efficiency to 

Indian allocative efficiency for the years 1985 to 2013 (years in which the datasets overlap). 

 

 

 

 

 

based on country-specific average sectoral cost shares. 8 We allow the aggregate output shares θst to vary across years, and 

base them on country-specific sectoral shares of manufacturing output. 9 We use labor costs as our measure of labor input 

because it captures variation in human capital and hours worked across plants. 

4.3. Time-series results 

Fig. 1 plots inferred allocative efficiency for India and the U.S. over their respective samples. While allocative efficiency 

exhibits no clear trend in India, there is a remarkable decrease in allocative efficiency in the U.S. from 1978 to 2006. As a

result, over the entire sample allocative efficiency surprisingly averages the same 48% for both India and the United States. 10 

The bottom plot in Fig. 1 shows the ratio of U.S. to Indian allocative efficiency for their overlapping samples. Allocative

efficiency is lower in the U.S. than in India by around the year 20 0 0 — substantially lower, as U.S. allocative efficiency

averages only two-thirds of Indian allocative efficiency from 2003 to 2013. 

The dramatic decline in allocative efficiency for the U.S. mirrors a sharp rise in its TFPR dispersion. Fig. 2 displays the

variance of ln(TFPR) for both India and the U.S. for 1985 to 2013. 11 While the Indian data display little or no trend, the
8 We assume a rental rate for fixed assets of 20% and a rental rate of 10% for inventories. 
9 Our results are not sensitive to the choice of constant or time-varying sectoral shares. 

10 Average gains from full reallocation are 123% for the U.S. versus 111% for India. In contrast, Hsieh and Klenow (2009) found 40-60% higher potential 

gains from reallocation in India than in the United States. Our estimates diverge from Hsieh and Klenow’s for several reasons: We use gross output while 

they use value added; we have a 1978–2013 LRD sample while they have 1987, 1992, and 1997 Census plants; we trim 1% tails in the U.S., while they trim 

2%. (They inconsistently trimmed 2% for the U.S. and only 1% for India.) 
11 Fig. 2 plots the variance of ln(TFPR) weighting plants by output shares. This measure maps more directly into allocative efficiency than the unweighted 

variance. The unweighted variance of ln(TFPR) exhibits the same trend in the U.S., with the variance increasing from 0.06 in 1978 to 0.16 in 2009, before 

falling slightly to 0.13 in 2013. 
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Fig. 2. Variance of ln(TFPR) Source: Indian ASI and U.S. LRD. The variance of ln(TFPR) is weighted by gross output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

variance of ln(TFPR) essentially doubles for the U.S. from 1985 to the late 20 0 0s, before retreating part way by the end of

the sample. Online Appendix Figure A2 plots the 90:50 and 50:10 percentile ratios of ln(TFPR) for the U.S., and shows that

the increasing variance is mostly coming from the right tail. 

As noted, allocative efficiency averaged 48% in both the Indian and U.S. samples. This may seem inconsistent with the 

markedly higher TFPR dispersion for the U.S. displayed in Fig. 2 . But India’s intermediate share is 82.2% while the U.S.

intermediate share is 65.3%, and this higher intermediate share magnifies the impact of distortions on allocative efficiency. 

A related point, point is that TFPR dispersion tends to be smaller when working with gross output than with value added;

see Gandhi et al. (2017) for example. 

Decker et al. (2020) document that dispersion in labor productivity increased both in the Annual Survey of Manufactures 

and in the Revenue-Enhanced Longitudinal Business Database, suggesting some true increase in productivity dispersion. The 

increase in TFPR dispersion we document in the ASM is much larger than they find in labor productivity. If the rising disper-

sion in TFPR we find is true, it would have far more dramatic implications for allocative efficiency. 12 In Section 7 we examine

how correcting for measurement error alters these patterns, in addition to its impact on trends in allocative efficiency. 

Figure A3 in the Online Appendix shows that TFPQ dispersion rose in both the U.S. and India from 1985–2013. The

variance in logs rose from about 0.35 to 0.45 or more in both countries. At the same time, the elasticity of TFPR with

respect to TFPQ rose in the U.S. and fell in India — see Figure A4 in the Online Appendix . The elasticity rose from around

0.27 to 0.37 in the U.S. over time. According to some theories, such as Bento and Restuccia (2017) , this elasticity can have

important implications for incentives to invest in TFPQ improvements. 

In the next section we present out methodology to correct TFPR for measurement errors with the goal of obtaining

measures of allocative efficiency that are more robust to such errors. 

5. Measurement error 

Calculations of misallocation, including those just presented, interpret plant differences in measured average revenue 

products (TFPR) as differences in true marginal products. In many of these studies the underlying plant data are longitudinal. 

We will show that, using such data, one can project the elasticity of revenue with respect to inputs on TFPR to answer the

question: to what extent do plants with higher measured average products have higher true marginal products? The logic 

is similar to using the covariance of two noisy measures of a variable, here noisy measures of a plant’s marginal revenue

product, to recover a truer measure of the variable. 

5.1. Measurement error and TFPR 

Consider the following description of measured inputs ̂  I and measured revenue ̂ R for plant i (year subscripts implicit): ̂ I i ≡ φi · I i + f i , (29) 

̂ R i ≡ χi · R i + g i , (30) 
12 The variance of labor productivity in Decker et al. (2020) increases by roughly 20-30% between 1996 and 2012. However, the variance of ln(TFPR) in 

Fig. 2 increases by roughly 40-60% between 1996 and the late 20 0 0s. 

S46 

http://klenow.com/misallocation-mismeasurement-appendix.pdf
http://klenow.com/misallocation-mismeasurement-appendix.pdf
http://klenow.com/misallocation-mismeasurement-appendix.pdf


M. Bils, P.J. Klenow and C. Ruane Journal of Monetary Economics 124S (2021) S39–S56 

 

 

 

 

 

 

 

where I and R denote true inputs and revenues, f and g reflect additive measurement errors, and φ and χ are multiplica- 

tive errors. Note that the additive terms f and g could alternatively reflect deviations from Cobb-Douglas production. For 

instance, positive values for f (such as overhead inputs), or negative for g, would imply marginal revenue exceeds average 

revenue per input. For simplicity, we treat the impact of measurement error in inputs as common across different inputs 

(capital, labor, intermediates) here. 13 

In the setting of Section 3 , profit maximization by each plant implies 

TFPR i ≡
̂ R i ̂ I i 

∝ τi 

(̂ R i 

R i 

I i ̂ I i 

)
. (31) 

Absent measurement error, a plant’s TFPR provides a measure of its distortion τ . But, to the extent revenue is overstated or

inputs are understated, TFPR will overstate τ . In that circumstance, the plant’s marginal revenue product is less than implied 

by its TFPR . 

The growth rate of a plant’s TFPR will reflect the growth rate of its measurement error as well as the growth rate of its

τ : 

�TFPR i = �τi + �

(̂ R i 

R i 

)
− �

(̂ I i 
I i 

)
. (32) 

� denotes the growth rate of a plant variable relative to the mean in its sector. 

If there are only additive measurement errors, then TFPR growth is 

�TFPR i ≈
�τi ̂ R i /R i 

−
(̂ R i − R i ̂ R i 

−
̂ I i − I i ̂ I i 

)
�I i + 

dg i ̂ R i 

− df i ̂ I i 
, (33) 

where the approximately equals reflects ignoring higher-order terms. As above, dx denotes the level change in x , as opposed

to �x , which denotes its percentage change. The response of TFPR i to inputs speaks to the size of additive measurement

error in revenue versus that in inputs. TFPR decreases when inputs rise if revenue is overstated relative to inputs ( ̂
 R −R ̂ R 

> ̂

 I −I ̂ I 
),

and TFPR increases when inputs rise when the reverse is true. Because relative measurement error, 
̂ R −R ̂ R 

versus 
̂ I −I ̂ I 

, causes 

TFPR i to mismeasure τ , the response of TFPR to inputs can identify the role of such errors in observed TFPR . 

By contrast, if there are only multiplicative measurement errors, then the percentage change in TFPR equals: 

�TFPR i = �τi + �χi − �φi . (34) 

Here TFPR growth provides no information on measurement error in the level of TFPR , except to the extent �τ , �χ , 

and �φ project onto those errors. With proportional measurement errors, any increase in true inputs or revenue at a plant 

will scale up its measurement errors. Here errors that plague TFPR also contaminate the change in revenue relative to the 

change in inputs. 

Going forward, we focus on purely additive measurement error. For this reason, our estimates should be viewed as a 

conservative assessment of the role of measurement error in generating differences in TFPR . We allow the variance of shocks 

to measurement error to scale with a plant’s productivity A and distortion τ ; larger plants have a larger average absolute

value of measurement error. For this reason, we do not predict that measurement errors become less important with trend 

growth or systematically differ for large and small plants. We find that even this conservative assessment dramatically 

reduces the size and volatility of inferred misallocation. We further assume that measurement errors are mean zero. Finally, 

we assume that measurement errors are uncorrelated with the distortion τ across plants. 

We next show that the relation between a plant’s TFPR level and how its revenue growth responds to input growth can

address the role of measurement error in TFPR. We then present results for both U.S. and Indian manufacturing. 

5.2. Identifying measurement error 

Our focal point is the elasticity of measured revenue with respect to measured inputs, conditional on plant TFPR taking 

a particular value–call it TFPR k : 

βk ≡
Cov k ((�̂ R i , �̂ I i )) 

Var k ((�
̂ I i )) 

. (35) 

For exposition we first assume no measurement error, then allow for errors in both revenue and inputs. Absent measure- 

ment error, changes in revenue and inputs simply reflect changes in the plant’s productivity and distortion: 

�̂ I i = �I i = ( ε − 1 ) �A i − ε �τi , (36) 
13 We do allow and incorporate τ ’s specific to inputs, but not measurement error specific to inputs. In a previous working paper version, we allowed 

measurement error specific to each input and it did not affect the results much. The dominant source of measurement error we infer is to all inputs or 

revenue. This would be consistent with additive measurement error in the form of missed or double-counted sources of revenue or inputs. 

S47 



M. Bils, P.J. Klenow and C. Ruane Journal of Monetary Economics 124S (2021) S39–S56 

 

 

 

 

 

 

 

 

 

 

 

 

 

�̂ R i = �R i = (ε − 1)(�A i − �τi ) . (37) 

So βk is given by: 

βk = 1 + φk , (38) 

where φk ≡ Cov k ((�τi , �I i )) 

Var k ((�I i )) 
= 

−ε · Var k ((�τi )) + (ε − 1) · Cov k ((�τi , �A i )) 

Var k ((�I i )) 
. (39) 

φk is the elasticity of �τ with respect to �I. 

βk reflects a standard inference problem: a given increase in inputs creates a larger response in revenue if it is driven by 

A than if it is driven by a decline in τ . If Var k ( �τ ) = 0 then βk = 1 , whereas if Var k ( �A ) = 0 then βk = 

ε−1 
ε < 1 . If τ follows

a random walk so that �τ is i.i.d., then βk reduces to 1 + φ regardless of TFPR. For stationary τ , its conditional volatility

is greater at extreme τ ’s, reflecting τ ’s regression back to its mean. Thus the Var k ((�τ )) is greater at extremes for TFPR,

implying smaller values for βk . 

With measurement error in plant revenues and inputs, (38) becomes: 

βk ≈ E k 

(
R i ̂

 I i ̂ R i I i 

)
((1 + φk )) + ψ k , (40) 

where φk ≡
Cov k 

(
I i ̂ I i 
�τi − df i ̂ I i 

, �̂ I i 

)
Var k 

(
�̂ I i 

) and (41) 

ψ k ≡
1 

Var k 
(
�̂ I i 

)(
Cov k 

(
dg i ̂ R i 

, �̂ I i 

)
+ Cov k 

(
R ̂

 I i ̂ R i I i 
, �̂ I i 

(
�̂ I i + 

I i ̂ I i 
�τ − df i ̂ I i 

))
−E k 

(
�̂ I i 

)
Cov k 

(
R i ̂

 I i ̂ R i I i 
, 

(
�̂ I i + 

I i ̂ I i 
�τ − dg i ̂ I i 

)))
. (42) 

The approximate equality in (40) means it is a good approximation for relatively small changes in A , τ , f , and g. 

Comparing (38) and (40) , with measurement error the factor 1 + φk in βk scales by E k (( 
R ̂ I ̂ R I 

)) . If revenue is overstated, then

any implied increase in revenue is only manifested to the proportion R/ ̂  R . If inputs are overstated, then any true increase

in inputs is scaled down by ̂  I /I, so the response in revenues is scaled up by ̂  I /I. The same factor R ̂ I ̂ R I 
confounds TFPR as a

measure of the true distortion τ , with the expectation of τ at a particular TFPR level k given by: 

E k ( τi ) = E k 

(
R i ̂

 I i ̂ R i I i 

)
· TFPR k . (43) 

Using the definition of βk from (40) , we have: 

E k ( τi ) = E k 

(
R i ̂

 I i ̂ R i I i 

)
· TFPR k = 

(
βk − ψ k 

1 + φk 

)
· TFPR k . (44) 

Measurement error affects the interpretation of φk and potentially introduces the factor ψ k . φk still reflects the inference 

problem that the elasticity of measured revenue with respect to measured inputs depends on the source of the change in

inputs. There are now three sources of change: �A , �τ and df . Increases in measured inputs driven either by a decrease

in τ or an increase in f result in smaller responses in revenue than do increases in A . Turning to ψ k , its first element

allows for the possibility that changes in measurement errors in revenue are correlated with measured changes in inputs. 

The latter terms are more subtle, reflecting any correlations between the measurement error component of TFPR, in levels, 

and changes in inputs or measurement errors. 

If �τ , �A , df/ ̂  I and dg/ ̂  R are each i.i.d., then ψ k = 0 and φk reduces to φ, independent of the level of TFPR. In this case

βk ≈ E k (( 
R ̂ I ̂ R I 

))((1 + φ)) and (44) yields: 

E k ( τi ) ∝ βk · TFPR k . (45) 

Thus, given estimates of the βk ’s, we can answer the question: If two plants differ in TFPR, what is the expected difference

in their actual marginal revenue products due to differences in their τ ’s. If differences in TFPR partially reflect errors f or g,

then 

̂ βk ’s will be systematically lower at higher TFPR’s. 

We will use equation (45) as a benchmark to correct TFPR for measurement error. In general, ψ k � = 0 and φk will depend

on the level of lagged TFPR. To address these possibilities, we will simulate a model economy under plausible scenarios 
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to see if our simple correction using (45) overstates or understates the role of measurement error in TFPR dispersion. In

particular, we will simulate models where �τ , �A , df ̂ I 
and 

dg ̂ R 
are not i.i.d., for instance due to τ , A , or measurement errors

being stationary. To anticipate, we will find that our correction based on (45) is quite accurate for a wide range of parameter

values, especially if measurement errors are only moderately large. For very large measurement errors, we find (45) tends 

to under estimate the role of measurement error, rendering our corrections somewhat conservative. 

From (45) , we can capture the dispersion in τ ’s that is predicted by TFPR’s. But in the presence of measurement error

there will also be differences in τ ’s that are orthogonal to TFPR. For instance, a plant with a high value for τ but understated

revenue might display purely average TFPR. To capture this component, we “add back” variation in τ ’s that is orthogonal to 

TFPR, under an assumption that true τ is orthogonal to the measurement error component of TFPR. 

From the relation between TFPR, τ , and measurement error, we have: 

Var 

(
ln τi 

)
= Var 

(
ln TFPR i 

)
− Var 

(
ln 

(
R i ̂

 I i ̂ R i I i 

))
+ 2 Cov 

(
ln τi , ln 

(
R i ̂

 I i ̂ R i I i 

))
. (46) 

We assume that the two components of TFPR, namely the true distortion τ and the measurement error component 
̂ R I 

R ̂  I 
, are

orthogonal to each other in their natural logs. This eliminates the last term in equation (46) . Furthermore, the middle term

can be written as the two terms: 14 

−Var 

(
ln 

(
R i ̂

 I i ̂ R i I i 

))
= Cov 

(
ln TFPR k , E k 

(
ln 

(
R i ̂

 I i ̂ R i I i 

)))
− Cov 

(
ln τi , ln 

(
R i ̂

 I i ̂ R i I i 

))
, (47) 

which reduces to its first term, given the assumption τ and 

̂ R I 

R ̂ I 
are orthogonal. 

Thus equation (46) can be reduced to: 

Var 

(
ln τi 

)
= Var 

(
ln TFPR i 

)
+ Cov 

(
ln TFPR k , E k 

(
ln 

(
R i ̂

 I i ̂ R i I i 

)))
. (48) 

The first term is data. The second is provided by how the estimates of βk , discussed earlier in this subsection, covary with

TFPR. We add back dispersion in τ that is mean zero and orthogonal to TFPR, with variance dictated by equation (48) . In

turn, that variance can be expressed as: 

σ 2 = − Cov 

(
ln ( TFPR k ) , ln 

(
βk − ψ k 

1 + φk 

))
− Var 

(
ln 

(
βk − ψ k 

1 + φk 

))
. (49) 

We assume this component in τ , orthogonal to TFPR, is distributed lognormally. 

5.3. Recapping our approach 

To recap, our procedure takes the following steps: 

1. For a sample of panel plants, construct output growth, composite input growth and deciles of TFPR (Tornqvist deviations 

from sector-year average). 

2. Regress output growth on input growth separately for each decile k of TFPR, weighted by each plant’s share of aggregate

costs. The coefficients on input growth are the estimates ˆ βk . 

3. Merge ˆ βk estimates into the full cross-sectional dataset of plants using the cutoffs between each TFPR decile from the 

panel estimation. 

4. Construct corrected variance of ln(TFPR) to equal the variance of ln(TFPR) plus the covariance of ln(TFPR) and ln( ̂  βk ). 

5. Correct misallocation from plant-level ˆ τ estimates, constructed as ln ( ̂  τ ) = ln ( TFPR ) + ln ( ̂  βk ) + ε , for ε distributed log-

normal with mean zero and variance equal to: - Cov[ln(TFPR), ln( ̂  βk )] - Var(ln( ̂  βk ). 

The intuition for our approach is as follows. Absent measurement errors, the elasticity of plant revenue with respect to 

inputs β should not depend on a plant’s level of TFPR. As outlined in Section 5.2 , while β will generally be less than one,

unless the relative volatility of shocks to firm τ ’s are correlated with the level of TFPR, then TFPR does not predict β . By

contrast, under additive measurement errors, measurement error maps to a lower elasticity β . Therefore, the relation of β̂
to TFPR speaks to the role of measurement error in TFPR dispersion, in turn yielding an expected true distortion τ for a

plant, given its TFPR. Furthermore, we can correct allocative efficiency for the role of the measurement errors, conditional 
on a covariance of measurement error with true distortions. We do so for the case of zero covariance in Section 7 . 

14 This step uses that ln 

(
R ̂  I ̂ R I 

)
equals ( − ln TFPR + ln τ ) and that it can also be broken into E k 

(
ln 

(
R ̂  I ̂ R I 

))
and 

(
ln 

(
R ̂  I ̂ R I 

)
− E k 

(
ln 

(
R ̂  I ̂ R I 

)))
. 
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Table 1 

Coefficients ̂ βk for revenue growth on input growth by TFPR decile. 

Decile k → 1 2 3 4 5 6 7 8 9 10 

India 1.087 1.040 1.027 0.996 1.007 0.991 0.996 0.989 0.951 0.882 

1985–2013 (.017) (.012) (.010) (.014) (.011) (.011) (.009) (.014) (.010) (.011) 

U.S. 1.046 0.995 0.969 0.961 0.931 0.896 0.863 0.837 0.704 0.541 

1978–2013 (.013) (.019) (.015) (.019) (.020) (.016) (.014) (.019) (.021) (.021) 

Source: Indian ASI and U.S. LRD. Entries are coefficients from regressing revenue growth on input growth by 

decile of ln(TFPR), as shown in equation (50) . TFPR deciles are constructed as Tornqvist deviations from the (cost- 

weighted) sector-year average. Decile 1 corresponds to the lowest decile of TFPR, and Decile 10 the highest decile 

of TFPR. Regressions are weighted by each plant’s (Tornqvist) share of all input costs. Standard errors are clus- 

tered at the industry level. There are 1,423,0 0 0 plant growth rate observations in the U.S. sample, and 318,311 

observations in the India sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Estimates for India and the U.S. 

For both India and the U.S. we start with plants that are observed in consecutive years. This reduces the number of

observations in the U.S. to 1,423,0 0 0 and in India to 318,311. We then divide each country’s data into separate time windows.

For India we have growth rates for 1985–1986 to 2013–2014 that we split into five windows of approximately six years

each. 15 For the U.S. we divide 36 years in growth rates from 1978–1979 to 2013–2014 into five windows of approximately

seven years each. We then regress plant revenue growth on plant input growth by decile of TFPR in each window: 

�̂ R i = ̂

 λk + ̂

 βk �̂ I i + e i , (50) 

Here i denotes the plant and k the decile of TFPR. �̂ R i , �
̂ I i and TFPR are each deviations from the sector-year average for

that plant. The individual decile-windows contain on average 13,0 0 0 plants per year for India and 41,0 0 0 for the U.S. Within

each decile, plants are weighted by their share of total input costs. 16 

Measurement error is manifested in a lower β at higher levels of TFPR. We first report ̂ β by decile of TFPR, pooling all

years for each country. The estimates are in Table 1 . Looking first at India, we see a clear tendency for ̂ β to decline with the

level of TFPR. This decline is most pronounced in the top two deciles of TFPR. The difference in 

̂ β going from the bottom

to the top decile is –0.205 with a standard error of 0.020. 17 For the U.S. the negative relationship between TFPR and 

̂ β is

even more striking. ̂ β declines monotonically with TFPR and, as in India, most sharply in the top two deciles of TFPR. The

difference in 

̂ β between the top and bottom deciles is –0.505 with a standard error 0.025. 18 

How does the relation between TFPR and 

̂ β change through time? Fig. 3 displays these estimates for India and the U.S.,

with ln ( ̂  β) plotted against ln(TFPR) by sample period. For India, ̂ β decreases with TFPR to a similar degree in all periods.

Fig. 3 reveals the increase in U.S. TFPR dispersion over time, manifested by the increasing spread with respect to TFPR in

later periods. Over time ̂ β becomes much more negatively related to TFPR in the United States. Thus the increased dispersion

in TFPR in the U.S. is associated with an increased role for measurement error in that dispersion. 

Given the ̂ βk estimates, we construct a corrected cross-sectional distribution of distortions τ ’s for each time frame in 

each country according to: 

ln ( ̂  τ ) = ln ( TFPR ) + ln ( ̂  βk ) + ε. (51) 

More exactly, each plant in a cross-sectional sample is assigned the ˆ βk estimated for the TFPR decile corresponding to its 

TFPR. 19 ε is drawn from a log normal distribution, conditional on TFPR, with variance as dictated by equation (49) . 20 

We report the resulting dispersion in ln (τ ) ’s over time for each country in Table 2 , expressed in terms of the variance

of ln ( ̂  τ ) relative to the variance of ln(TFPR). For India, the variance of ̂ τ is consistently about 30% smaller than the variance

of TFPR. For the U.S. we estimate an even bigger and growing role for measurement error. In the U.S. the variance of ̂ τ is

about 70% lower than that for TFPR from 1999 onward. The implication, we shall see, is that measurement error exaggerates
15 Because of breaks in the panel identifiers, we have growth rates for only 25 of the 29 years. 
16 More precisely, a plant’s share of inputs reflects the (Tornqvist) average of its shares across the annual observations being differenced. Similarly, a plant’s 

relative TFPR reflects the average of its relative TFPRs across the two years. In constructing a plant’s input growth rate, growth rates in intermediates, labor, 

and capital are weighted by its sector’s average input shares. Observations where TFPR increases or decreases by a factor greater than five are excluded. 
17 We cluster our standard errors at the industry level. Our standard errors are approximately one third smaller if we cluster at the plant level. 
18 Figures A8 and A9 in our Online Appendix split the samples by plant size and age, respectively. We find evidence that measurement error is more 

severe among larger firms in both the U.S. and India. Measurement error appears worse for older firms in the U.S., but for younger firms in India. 
19 Some years in the cross-sectional sample appear in two separate windows. For instance the year 2002 for India is spanned by the panel window 

covering growth rates from 1997–1998 to 20 01–20 02 as well as the window for growth rates from 20 02–20 03 to 20 07–20 08. For such years we average 

the ̂ β ’s for its backward and forward-looking windows. 
20 Comparing equations (51) and (45) , we have replaced ln 

(
E k (τ ) 

)
with E k 

(
ln (τ ) 

)
. For ln (τ ) conditionally distributed lognormal, this adds a sector- 

specific constant term that does not enter into measured dispersion. 
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Fig. 3. India and U.S. β Slopes Source: Indian ASI and U.S. LRD. The figures plot the ̂ βk coefficients recovered from running the regressions in (50) against 

deciles of TFPR. In each time window and for each TFPR decile k , revenue growth is regressed on input growth to obtain ̂ βk . The relationship is plotted 

separately for five different time windows. 

Table 2 

Dispersion in Marginal Products vs. TFPR Dispersion. 

Panel A: India 

1985–1991 1992–1996 1997–2001 20 02–20 07 2008–2013 

σ 2 ̂ τ
σ 2 

TFPR 

0.739 0.763 0.745 0.697 0.732 

Panel B: U.S. 

1978–1984 1985–1991 1992–1998 1999–2005 2006–2013 

σ 2 ̂ τ
σ 2 

TFPR 

0.404 0.432 0.379 0.325 0.274 

Source: Indian ASI and U.S. LRD. The table shows the ratio of the variance of ln( ̂  τ ) to 

the variance of ln(TFPR), for both India and the U.S. for five different time periods. 

Variances are output share weighted. ̂  τ is constructed as in equation (51) . 

 

 

 

misallocation in both countries, but especially in the U.S. in recent years. 21 But first, in the next section, we use simulations

of a wider range of models to examine the robustness of our approach. 

6. How robust is our approach? 

Our derivations simplified the analysis by assuming i.i.d. shocks to the growth rates of productivity, τ ’s, and measure- 

ment errors. More generally, the expectation of ̂ β depends on the expected importance of shocks to productivity, τ ’s, and 

measurement errors. Because TFPR reflects τ and measurement errors, this allows an additional channel for ̂ β to differ 

across the distribution of firm TFPRs. 22 For this reason, we now explore the robustness of our approach in a simulated

economy without i.i.d. shocks. Furthermore, the simulations show how the procedure performs for realistically-sized shocks, 

realistic in that they align with the targeted empirical moments. This is useful since are derivations make use of first-order

approximations. We match simulated moments to data moments for India and the United State. We find that our estimator 
21 Our estimated variance for ln( τ ), which underlies our measure of allocative efficiency, is given by ̂ Var [ ln (τ )] = ̂

 Var [ ln(TFPR)] + ̂

 Cov [ ln(TFPR) , ln (β)] . 

There are two elements of sampling error in this estimate. The first is that ̂ Var [ ln(TFPR)] may differ from its population moment. But given the large 

sample sizes we employ for both the U.S. and India, this generates standard errors that are a couple order of magnitudes smaller than our estimated 

variances for ln( τ ). For instance, if ln(TFPR) is distributed normally, the standard error for ̂ Var [ ln(TFPR)] would be only about 1 / 150 of our estimated 

variance for ln( τ ) for both India and the United States. A more important source of error arises from uncertainty in our measure of ̂ Cov [ ln(TFPR) , ln (β)] 

reflecting uncertainty in our estimates for β . To assess its magnitude, for each country we construct the ̂ Cov [ ln(TFPR) , ln (β)] across TFPR deciles for each 

of 100 separate draws of ̂ β ’s, each independently drawn from a normal distribution with mean and standard deviation dictated by the point estimates 

and standard errors for that country’s ̂ β ’s. (Each draw actually implies 10 distinct draws, one for each decile of TFPR. For India the sample pools years, 

1985-2013, for the U.S. 1978-2013.) The distribution of those estimated covariances imply a standard error for ̂ Cov [ ln(TFPR) , ln (β)] of 0.0 0 07 for India and 

0.0022 for the United States. These are more significant than the sampling error in ̂ Var [ ln(TFPR)] . But they still imply standard errors for ̂ Var [ ln (τ )] that 

are relatively small, by at least an order of magnitude, compared to our estimated Var[ ln (τ )] for each country. 
22 This gives rise to the terms φk and ψ k in βk discussed in Section 5.2 . 
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performs well even if measurement error is sizable, such as we estimate for India. If measurement error is enormously im-

portant, as we find for the U.S., then our approach is conservative, as it tends to understate the role of measurement error

in TFPR dispersion. 

6.1. Simulations 

We assume that plant i ’s idiosyncratic productivity in period t is given by: 

A it = A i · a it . (52) 

A i is the permanent component of a plant’s productivity, which we assume is lognormally distributed: ln (A i ) ∼ N(0 , σ 2 
A 
) . a it 

is the transitory component of plant productivity. Plants also face an idiosyncratic, time-varying distortion τit . a it and τit 

follow: 

ln (a it ) = ρa · ln (a it−1 ) + ηa 
it where ηa 

it ∼ N(0 , σ 2 
a ) , (53) 

ln (τit ) = ρτ · ln (τit−1 ) + ητ
it where ητ

it ∼ N(0 , σ 2 
τ ) . (54) 

Measurement errors in inputs and revenues follow AR(1) processes, with the variance of the shocks scaling with the size of

the plant: 

f it = ρ f · f it−1 + η f 
it 

· I it where η f 
it 

∼ N(0 , σ 2 
f ) , (55) 

g it = ρ f · g it−1 + ηg 
it 

· R it where ηg 
it 

∼ N(0 , σ 2 
g ) . (56) 

As a baseline, we consider the case with measurement error in inputs only. We set ε = 4 and ρa = ρτ = ρ f = 0 . 9 and

use the simulated method of moments (simulating 30,0 0 0 plants over 50 years) to calibrate στ , σA , σa and σ f . 
23 We target

four moments from the data: the (output share weighted) variance of ln(TFPR), the unweighted variance of ln(TFPQ), the 

slope of ln( ̂  β) vs. Tornqvist ln(TFPR) across deciles, and the variance of input growth. 24 

The parameters are jointly calibrated, but they are differentially important for certain moments. The variance of ln(TFPR) 

and the ln( ̂  β) slope are particularly important in disciplining the values of στ and σ f . The variance of ln(TFPQ) is sensitive

to the variance of the permanent component of firm productivity σA , while the variance of input growth relates strongly 

to the variance of productivity shocks σa . Table 3 shows our estimated parameter values. The targeted data moments and

simulated moments for each time period in India and the U.S. are provided in Table A2 in our Online Appendix . The simu-

lated moments are always close to the targeted moments — though not exactly the same because the relationship between 

parameters and moments is non-linear. 

The main outcome of interest is how accurately our estimator captures the variance of distortions relative to TFPR disper- 

sion, σ 2 
τ /σ 2 

TFPR 
. Given that τ and A are lognormally distributed in the model, the variance of σ 2 

τ is proportional to allocative

efficiency. We compare our estimated share σ 2 ̂ τ /σ 2 
TFPR 

to the true share for India and the U.S. in Table 4 . Our estimator

performs remarkably well for India in all time periods. While conservative, in that it understates the role of measurement 

error, it deviates from the true share of distortions in TFPR dispersion by less than 1.3 percentage points on average. For the

U.S. the discrepancy is larger. We overestimate the share of true distortions in TFPR dispersion for all periods, particularly 

when there is a lot of measurement error. For the 2006–2013 window, our estimator says the variance of distortions is one

fourth the variance of TFPR, when in fact it is only one fiftieth. Despite this, our estimator does capture reasonably well the

movements over time in the share of distortions in TFPR dispersion. 

We obtain similar results when we add the autocorrelation of log TFPR as a targeted moment, with ρ = ρτ = ρ f as an

additional parameter. Likewise, we obtain similar results if measurement error is in revenues rather than inputs. Although 

we have more difficulty simulataneously hitting all targeted data moments, our estimator continues to be a conservative 

gauge of the importance of measurement error. We provide these results in our Online Appendix . 

In our Online Appendix we also check how multiplicative measurement error and adjustment costs affect our estima- 

tor. As expected, if all measurement error is multiplicative we find that our estimator predicts that TFPR dispersion stems 

entirely from distortions. So, in the presence of multiplicative errors, our estimated share of measurement error in TFPR 

dispersion is conservative. We also consider a model with adjustment costs whereby a plant chooses its inputs one period 

ahead, before its productivity shock is observed. Our estimator interprets TFPR dispersion due to adjustment costs as if this 

dispersion was due to true distortions. This would suggest that, if adjustment costs are important in the U.S. and India, the

share of TFPR dispersion due to τ dispersion may be even lower than what our estimator finds. 
23 We clean the simulated data in the same way we do the actual micro data: dropping observations with negative revenues or inputs and those where 

TFPR changes by a factor of five or more. We simulate all plants for 50 years, and then construct the simulated moments as the average value over the last 

30 years. 
24 We minimize the sum of the absolute log differences between the targeted data moments and the simulated moments. 
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Table 3 

Calibrated Parameter Values. 

στ σA σa σ f 

Panel A: India 

1985–1991 0.060 0.637 0.181 0.030 

1992–1996 0.074 0.711 0.102 0.040 

1997–2001 0.073 0.712 0.088 0.042 

2002–2007 0.056 0.733 0.110 0.039 

2008–2013 0.060 0.744 0.113 0.035 

Panel B: U.S. 

1978–1984 0.036 0.520 0.103 0.079 

1985–1991 0.053 0.517 0.075 0.088 

1992–1998 0.050 0.542 0.071 0.103 

1999–2005 0.044 0.500 0.070 0.123 

2006–2013 0.017 0.494 0.103 0.130 

Source: This table shows the parameter values recov- 

ered from the model calibration. The model is cali- 

brated for both India and the U.S. separately for five 

different time periods. στ is the standard deviation of 

the shocks to the distortions, σA is the standard de- 

viation of the permanent component of plant produc- 

tivity, σa is the standard deviation of the time-varying 

component of plant productivity, and σ f is the stan- 

dard deviation of shocks to measurement error in in- 

puts. 

Table 4 

Simulations: Our Estimator vs. Truth. 

Panel A: India 

1985–1991 1992–1996 1997–2001 20 02–20 07 2008–2013 

σ 2 ̂ τ
σ 2 

TFPR 

(our estimator) 0.678 0.712 0.699 0.640 0.692 

σ 2 
τ

σ 2 
TFPR 

(truth) 0.604 0.693 0.682 0.581 0.656 

Panel B: U.S. 

1978–1984 1985–1991 1992–1998 1999–2005 2006–2013 

σ 2 ̂ τ
σ 2 

TFPR 

(our estimator) 0.334 0.407 0.366 0.304 0.236 

σ 2 
τ

σ 2 
TFPR 

(truth) 0.143 0.240 0.181 0.107 0.015 

Source: This table shows, for simulated data, the ratio of the variance ln( ̂  τ ) to the variance of ln(TFPR), 

and the ratio of the true variance of ln( τ ) to the variance of ln(TFPR). Results are for both India and 

the U.S., and for five different time-periods each. The parameters used to generate each of these 

results are shown in Table 3 . 

 

 

 

 

 

 

7. Revisiting misallocation 

We now compare the “raw” measures of allocative efficiency for Indian and U.S. manufacturing to our estimates purging 

the impact of measurement error. This is achieved by replacing TFPR as an estimate of τ with the estimated dispersion of

τ ’s implied by equation (51) , which we repeat here for convenience: 

ln ( ̂  τ ) = ln ( TFPR ) + ln ( ̂  βk ) + ε. (57) 

To construct allocative efficiency we also need measures of plant TFPQ and sectoral TFPR. Measurement error in inputs 

affects TFPQ and TFPR in the same way; so we get that ln ( ̂  A ) = ln ( TFPQ ) + ln ( ̂  βk ) + ε. 25 To construct sectoral TFPR we need

corrected measures of sectoral MRPL, MRPX and MRPK. 26 We assume that measurement error is common to all inputs, and

therefore affects each of these in the same way. 27 Our estimates for ln ( ̂  βk ) are in Fig. 3 . 

We display corrected vs. uncorrected allocative efficiency for India in the top left panel of Fig. 4 . Averaging across years,

the correction increases allocative efficiency modestly from 48% to 53%. The impact of the correction is fairly stable for India

across the 29 years. Another way to express misallocation is in terms of the increase in productivity that can be reaped
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Fig. 4. Corrected Allocative Efficiency Source: Indian ASI and U.S. LRD. The India sub-figure shows uncorrected and corrected allocative efficiency (AE) for 

years 1985 to 2013. Average uncorrected AE is 47.7% while average corrected AE is 53.4%. The U.S. sub-figure show uncorrected and corrected allocative 

efficiency (AE) for years 1978 to 2013. Average uncorrected AE is 47.6% while average corrected AE is 67.4%. The bottom figure shows uncorrected and 

corrected allocative efficiency for the U.S. relative to India for years 1985 to 2013. 

 

 

 

 

 

 

by attaining perfect (100%) allocative efficiency. This is reported for India in Table 5 . With distortions measured by TFPR

dispersion, the potential increase in productivity is 111%. Based on the corrected numbers it is 21 percent lower, at 89%. 

In the top right panel of Fig. 4 we see a far greater impact in the United States. Our correction eliminates more than

half of potential gains from reallocation and the lion’s share of the conspicuous downward trend in allocative efficiency. 

Allocative efficiency declines by 15% over the 35 years according to our corrected series. While significant, this is only a

third of the 45% decline with no corrections. 

Table 5 reports the potential percent gains from going to 100% allocative efficiency in the United States. The correction 

reduces potential gains, averaged across years, from 123 percent down to 49 percent. In addition to dampening the trend in

misallocation, the correction moderates its higher frequency vagaries. As a result, volatility for the time series for gains, as 

measured by its standard deviation, plummets from 60 percent down to 12 percent. 

Our corrections dramatically affect com parisons of allocative efficiency in the U.S. versus India. The bottom panel of 

Fig. 4 displays the allocative efficiency for the U.S. relative to that in India. Without correcting, the U.S. averages a 16 percent

advantage in allocative efficiency for the first ten years (1985 to 1994). But in the last ten years, U.S. efficiency collapses
25 This expression is exact if measurement error contaminates only inputs, which we presume in presenting our results. Measurement error in revenues 

enters TFPQ with amplification ε
ε−1 

. But we find this is not quantitatively important under our elasticity of demand of ε = 4 . Hence our results do not 

hinge on assuming that measurement errors only affect inputs. 

26 Recall that TFPR s = 

(
ε

ε−1 

)[
MRPL s 

(1 −αs ) γs 

](1 −αs ) γs 
[

MRPK s 
αs γs 

]αs γs 
[

MRPX s 
1 −γs 

]1 −γs 

27 That is, ln ( ̂ MRPL ) = ln ( MRPL ) + ln ( ̂  βk ) + ε, and similarly for MRPK and MRPX. 
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Table 5 

Uncorrected and Corrected Gains from Reallocation. 

India U.S. 

Mean S.D. Mean S.D. 

Uncorrected gains 110.8% 17.1% 123.1% 59.7% 

Corrected gains 89.0% 12.9% 49.2% 12.1% 

Shrinkage 21% 20% 60% 80% 

Source: Indian ASI and U.S. LRD. This table reports the average 

and standard deviation of uncorrected and corrected gains from 

improving allocative efficiency to 100% in India (1985–2013) 

and the U.S. (1978–2013). The shrinkage is the percent reduc- 

tion in the average or standard deviation of gains after our cor- 

rections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relative to India. Over those years U.S. efficiency averages only two-thirds that for India. Our corrected series, however, 

looks entirely different. The U.S. advantage relative to India is much higher, averaging 25 percent, compared to - 6 percent

uncorrected. The U.S. advantage remains positive throughout, with a modest exception in 2006. 

We demonstrated in Section 4.3 that the perceived decline in allocative efficiency for the U.S. mapped directly to a sharp

rise in the variance of ln(TFPR) in the United States. It should come as no surprise, then, that our correction to allocative

efficiency reflects much less estimated dispersion in τ ’s. We show that this is indeed the case in our Online Appendix .

Dispersion in our corrected TFPR series is much lower, trends less, and is generally less volatile. 

Our adjustments for measurement error also alter the implied elasticity of TFPR with respect to TFPQ in the United 

States. As shown in our Online Appendix , our corrections lower the elasticity and its upward drift. Bento and Restuccia

(2017) and Decker et al. (2020) highlight this elasticity as indicative of barriers to investing in, or benefiting from, higher

TFPQ at the plant level. Related, our corrections undermine the case that TFPQ dispersion has risen across plants in the U.S.

(see Online Appendix ), as emphasized for example by Gouin-Bonenfant (2019) . 

8. Conclusion 

We proposed a way to estimate the true dispersion of marginal products across plants in the presence of additive mea-

surement errors in revenue and inputs. We showed that the response of revenue growth to input growth should be lower for

high-TFPR plants in the presence of measurement error. We then used the projection of that response on TFPR to correct for

measurement error. While our method employs several assumptions, we used simulations to demonstrate that our approach 

is robust or at least conservative. 

We implemented our method on data from the Indian Annual Survey of Industries from 1985–2013 and the US. Annual 

Survey of Manufacturing from 1978–2013. In India, we estimated that true marginal products were significantly less dispersed 

than average products. As a result, potential gains from reallocation fell 21% and the volatility of those gains across years

fell by 20%. In the U.S. our correction had even more bite. Average potential gains from reallocation fell by 60%, while

time-series volatility fell by 80%. Our correction eliminated 2/3 of a severe downward trend in allocative efficiency for the 

U.S. Even corrected, allocative efficiency declined by 15% for U.S. manufacturing over the 35 years. Based on uncorrected 

data, allocative efficiency was 6% lower in the U.S. than in India for 1985 to 2013. In contrast, our corrected series implies

consistently higher allocative efficiency in the U.S. than in India. 

We hope our method provides a useful diagnostic for measurement errors that can be applied when researchers have 

access to panel data on plants and firms. For example, David and Venkateswaran (2019) and Bai et al. (2019) apply our

correction to firm-level data for China. 

Our findings leave many open questions for future research. Why did measurement error worsen considerably over time 

in the U.S.? Why, even after our corrections, does ample misallocation remain in the U.S. and India? Is this real or due to

some combination of model misspecification and proportional measurement error? If it is real, can it be traced to specific 

government policies or market failures (e.g. markup dispersion or capital/labor market frictions)? 
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