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Reset Price Inflation and the Impact of  
Monetary Policy Shocks†

By Mark Bils, Peter J. Klenow, and Benjamin A. Malin*

Many business cycle models use a flat short-run Phillips curve, due to 
time-dependent pricing and strategic complementarities, to explain 
fluctuations in real output. But, in doing so, these models predict 
unrealistically high persistence and stability of US inflation in recent 
decades. We calculate “reset price inflation”—based on new prices 
chosen by the subsample of price changers—to dissect this discrep-
ancy. We find that the models generate too much persistence and sta-
bility both in reset price inflation and in the way reset price inflation 
is converted into actual inflation. Our findings present a challenge to 
existing explanations for business cycles. (JEL E31, E52)

Many studies estimate a flat short-run Phillips curve and give it a central role in 
business cycles.1 Related, empirical investigations have found it takes several years 
for permanent aggregate shocks to fully affect prices.2

Two key ingredients are used to generate a flat short-run Phillips curve in New 
Keynesian models: sticky prices and strategic complementarities. Complemen
tarities slow the response of “reset prices”—the new prices chosen by the subsam-
ple of price changers—to aggregate shocks.3 Price stickiness (particularly if time  

1 See Smets and Wouters (2003, 2007) for some estimates on European and US data.
2 Christiano, Eichenbaum, and Evans (1999); Romer and Romer (2004); and Bernanke, Boivin, and Eliasz 

(2005), each based on US data, are a few of the many examples.
3 As has been well known since Ball and Romer (1990) and Kimball (1995), strategic complementarities in the 

pricing decisions of individual sellers can make reset prices sluggish in response to shocks. Examples of such com-
plementarities include sticky wages, sticky intermediate prices, and a kinked demand curve with respect to a firm’s 
relative price. Recent papers using one or more of these complementarities include Carvalho (2006), Blanchard 
and Galí (2007), Gertler and Leahy (2008), Nakamura and Steinsson (2010), and Altig et al. (2011). The evidence 
for complementarities is mixed: Klenow and Willis (2006) and Kryvtsov and Midrigan (2010) find it difficult to 
reconcile firm-level complementarities with, respectively, large idiosyncratic price changes and countercyclical 
inventories/sales. Gopinath, Itskhoki, and Rigobon (2010) and Gopinath and Itskhoki (2010), in contrast, see stra-
tegic complementarities behind the incomplete pass-through of exchange rates to import prices.
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dependent rather than state dependent) slows the response of actual prices to  
changes in reset prices.4

By intention, a flat short-run Phillips curve is a machine for dampening infla-
tion volatility and lengthening inflation persistence. In the last two decades, 
however, US inflation persistence has fallen markedly. Stock and Watson (2007, 
2009), Benati (2008), and Cogley, Primiceri, and Sargent (2010) document this 
phenomenon. As we will illustrate, even a reestimated New Keynesian model has 
trouble matching this low persistence. This discrepancy could reflect reset price 
inflation (strategic complementarities), conversion of reset price inflation into actual 
inflation (time dependence), or both.

To shed light on the conflict, we use micro data on prices from the US Consumer 
Price Index to construct an empirical measure of reset price inflation from January 
1990 through October 2009. We impute to all items, those changing and those not, 
the reset price changes exhibited by price changers. To arrive at the reset price 
change for an item changing price, we compare the item’s new price to its estimated 
reset price the previous period—not the item’s last new price, set perhaps many 
periods earlier. We do this separately for over 60 categories of consumption (autos, 
dental services, etc.) and then aggregate up.

A useful analogy is to home price indices constructed from repeat sales (e.g., 
Shiller (1991) and Zillow.com). These indices estimate the value of residential 
homes even when they are not sold. Once a home is sold, the difference between the 
transacted price and the previous period’s estimated value is used to update the esti-
mated value of other homes that were not sold. Our reset price index is the analog 
for all consumer items.

In the US data, aggregate reset price inflation shows no tendency to build over 
time. Reset price inflation behaves roughly i.i.d. This finding is not sensitive to 
excluding food and energy prices, which may face big sector-specific shocks. And 
it applies to regular prices, not just all posted prices, so it is not driven by transitory 
price discounts. The pattern holds for sticky items such as services, not just more 
flexibly priced items. Thus, low inflation persistence reflects, in part, low persis-
tence in reset price inflation.

We next compare the behavior of actual and reset price inflation to that for series 
generated from a simulated DSGE model. The model is taken from the influential 
work of Smets and Wouters (2007). Importantly, we remove price indexation, which 
is not consistent with the observed frequency of price changes observed in the micro 
data from the CPI. We also allow for the impact of sampling error in measured 
prices, which not only adds variance to the reset and actual price inflation series, but 
also contributes a transitory component.

The Smets and Wouters model incorporates time-dependent pricing and strong 
strategic complementarities. The latter take the form of sticky wages and kinked 
demand. As a result, the model yields reset price changes that build predictably over 
time. Model inflation is even more persistent and stable than is reset price infla-
tion. The model falters at both stages vis-à-vis the data. First, empirical reset price 

4 See Dotsey, King, and Wolman (1999), Golosov and Lucas (2007), and Midrigan (2011) for the importance of 
time- versus state-dependent pricing to the volatility of aggregate real output.
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inflation is not persistent. Second, actual inflation is even less persistent than would 
be predicted from time-dependent pricing conditional on actual reset price inflation.

Now, Smets and Wouters include large, transitory price markup shocks pre-
cisely to help reconcile a flat short-run Phillips curve with the data on inflation. The 
required shocks to the average desired price must be large. While such shocks help 
to reconcile the model with data on actual inflation, we find them at odds with our 
data on reset inflation. These markup shocks, because they must be so transitory, hit 
reset inflation for the model with much more force than they hit actual inflation. As 
a result, they drive variability in reset inflation relative to that in actual inflation far 
above what we see in the data.

De Walque, Smets, and Wouters (2006) suggest that the price markup shocks in 
the model serve as a reduced form for shocks to a flexible-price sector (e.g., food 
and energy). When we pursue this extension, we find that allowing large shocks in 
the flexible-price sector does succeed in pushing down inflation’s persistence and 
pushing up its volatility. But it does so, as with the markup shocks, at the expense of 
making reset price inflation way too volatile.

To recap, the business cycle literature has coalesced around time-dependent pric-
ing and strategic complementarities to explain business cycles. But these models 
rely on pricing inertia that is hard to reconcile with the data over the past 20 years. 
Our micro evidence reveals that this inconsistency is manifested in both the behav-
ior of reset prices and the behavior of actual inflation conditional on reset price 
inflation.

The rest of the paper proceeds as follows. Section I describes the dataset and how 
we construct reset price inflation. Section II documents some empirical properties of 
reset and actual price inflation. Section III compares statistics from a DSGE model 
to their empirical counterparts. Section IV concludes.

I.  An Empirical Measure of Reset Price Inflation

A. The CPI Research Database

We use the micro data underlying the nonshelter portion of the CPI to construct 
our measure of reset price inflation. The BLS surveys about 80,000 items a month 
in its Commodities and Services Survey. Individual prices are collected at approx-
imately 23,000 retail outlets across 87 large urban areas.5 The survey covers all 
goods and services except shelter, or about 70 percent of the CPI based on BLS 
consumer expenditure weights. The CPI Research Database (hereafter CPI-RDB) 
maintained by the BLS Division of Price and Index Number Research contains all 
prices in the Commodities and Services Survey since January 1988. We focus on the 
sample January 1990 through October 2009 (“1990–2009”).6

The BLS collects consumer prices monthly for food and fuel items in all areas. 
The BLS also collects prices monthly for all items in the three largest metropolitan 

5 The BLS selects outlets and items based on household point-of-purchase surveys, which furnish data on where 
consumers purchase commodities and services. The price collectors have detailed checklists describing each item 
to be priced—its outlet and unique identifying characteristics. They price each item for up to five years, after which 
the item is rotated out of the sample.

6 We use the 1988 –1989 data to initialize reset prices, as discussed below.
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areas (New York, Los Angeles, and Chicago). The BLS prices items in other catego-
ries and other urban areas only bimonthly. To minimize the importance of sampling 
error, we focus on prices from all areas. We randomly drop the prices from “odd” or 
“even” month prices for each item priced monthly and report all statistics based on 
the resulting bimonthly data.

The BLS defines approximately 300 categories of consumption as Entry Level 
Items (ELIs). Within these categories are prices for particular items (we call a lon-
gitudinal series of individual price quotes at the micro level a “quote-line”). The 
BLS provided us with unpublished ELI weights for each year from 1988–1995 and 
1999–2004, based on Consumer Expenditure Surveys in each of those years. We set 
the 1996 and 1997 ELI weights to the 1995 weights, and the 1998 weights to their 
1999 level. We set the 2005 and onward weights to their 2004 level. For each year, 
we normalize the ELI weights so that they sum to one across the expenditure catego-
ries— essentially all nonshelter goods. The CPI-RDB also contains weights for each 
price within an ELI. (Differential weights within an ELI reflect relative probabilities 
that an item is purchased versus sampled at an outlet.) We weight individual price 
quotes within an ELI in each bimonth in proportion to these weights.

The BLS labels each price as either a “sale” price or a “regular” price. Sale prices 
are temporarily low prices (including clearance prices). Golosov and Lucas (2007), 
Nakamura and Steinsson (2008), Kehoe and Midrigan (2010), and others filter out 
such sale prices on the grounds that they are not relevant to aggregate price move-
ments. We use all prices, including sale prices, when constructing our inflation and 
reset price inflation series. To the extent sales are truly idiosyncratic, their impact 
on the time series for price inflation, given the large samples of price quotes in each 
sector, should average close to zero. To the extent sales do affect aggregate inflation, 
they may not be idiosyncratic.7 That said, we will show our findings are robust to 
excluding sales prices when calculating inflation series.

Forced item substitutions occur when an item in the sample has been discontinued 
from its outlet, and the price collector identifies a similar replacement item (e.g., 
new model) in the outlet to price going forward. The monthly rate of forced item 
substitutions is about 3 percent in the sample. The vast majority of item substitutions 
involve price changes, and we retain these when calculating inflation statistics.8 
Our aggregate statistics are robust, however, to treating all price changes as zero at 
forced substitutions.

About 12 percent of the prices the BLS attempts to collect are unavailable in a 
given month. The BLS classifies roughly 5 percent of items as out of season in a 
given month. We put zero weight on out-of-season items when calculating both infla-
tion and the frequency of price changes. The BLS classifies the other 7 percent of 
missing items as temporarily unavailable. As these items may be only intermittently 
unavailable during the month, we treat items out of stock as available at the previ-
ously collected price. We employ this treatment for calculating both the frequency 

7 See Chevalier and Kashyap (2011) for some evidence that a grocery chain uses the magnitude and frequency 
of sales to respond to shocks.

8  For half of forced substitutions, the rate of price change imparted to the CPI reflects a BLS adjustment aimed 
at capturing quality change. We include these BLS quality adjustments in all price change statistics.
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of price changes and time series of inflation rates. Nakamura and Steinsson (2008) 
follow a similar procedure.

Although the BLS requires its price collectors to explain large price changes in 
order to minimize measurement error, some price changes in the dataset appear 
implausibly large. We exclude price changes that exceed a factor of five in either 
direction (up or down). Such price jumps constitute less than one-tenth of 1 percent 
of all price changes.

B. Defining Reset Price Inflation

Let ​p​i, t​ denote the log of the price of an individual item i at time t in the CPI-RDB. 
Let ​I​i, t​ be a price-change indicator:

Each period we divide items into those that change price (​I​i, t​ = 1) and those that 
do not change price (​I​i, t​ = 0). For prices that change, the reset price is simply the 
current price. For prices that do not change, we index our estimate of the reset price 
to the rate of reset price inflation among price changers in the current period. Our 
estimate of the log reset price level for item i in month t is, therefore,

​p​ i,t​ * ​  ={ ​p​i, t​ if ​p​i, t​  ≠ ​ p​i,t−1​ .
​p​ i,t−1​ *  ​  + ​ π​ t​ *​ if ​p​i,t​  = ​ p​i,t−1​

Starred variables denote reset values; variables without stars represent actual val-
ues. Our estimate of aggregate reset price inflation in period t is then

(1)	​ π​ t​ *​  = ​ 
​∑ 

i
  ​ 
 

  ​ ​ω​i, t​ (​  ​p​i, t​ − ​p​ i, t−1​ *  ​)​I​i,t​
  __  

​∑ 
i
  ​ 
 

  ​ ​ω​i,t​ ​I​i,t​​ 
 ​ ,

where ​ω​i, t​ denotes an item’s relative expenditure weight in t.
Although ​π​ t​ *​ employs only time t price changers, price changes from previous 

months are captured in the base values of ​p​ i, t−1​ *  ​ which are indexed to reflect prior 
changes. Aggregate reset price inflation can be equivalently defined as the weighted 
average of micro reset price inflation rates, i.e., ​π​ t​ *​ = ​∑ i​ 

 
 ​ ​ω​i, t​ ​π​ i, t​ * ​​, where ​π​ it​ * ​ = ​p​ i,t​ * ​ − ​

p​ i,t−1​ *  ​.9 Actual inflation is ​π​t​ = ​∑ i​ 
 
 ​ ​ω​i, t​ ​π​i, t​​, where ​π​i, t​ = ​p​i, t​ − ​p​i, t−1​ and, again, ​p​i,t​ 

denotes the log of the actual BLS price of item i at time t.

9 We considered an alternative measure of reset price inflation based on regressing each price change on bimonthly 
dummies taking the value 1 for bimonths spanning each price spell. This measure parallels the Case-Shiller Home 
Price Index (Shiller 1991), which allocates price increases for homes to the months between repeat sales. In our data 
and model economies, this regression-based measure exhibits very similar statistics to that based on (1).

​I​i, t​  =  {1  if ​p​i, t​  ≠ ​ p​i, t−1​.
0  if ​p​i, t​  = ​ p​i, t−1​
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In Table 1 we present a stylized example useful for contrasting the rate of reset 
price inflation (​π​ t​ *​) to actual inflation (​π​t​) and to the average inflation of price chang-
ers (call this ​​     π​​t​). The example has two goods. Both goods change price in period 0, 
establishing base prices for calculating reset price inflation. Good A’s price increases 
by 20 percent in period 1, with Good B’s unchanged. This yields a rate of 20 percent 
for reset price inflation, same as the average rate of price increase conditional on 
changing price, while actual inflation is 10 percent. But note that it also kicks up the 
base price for calculating reset price inflation by 20 percent, not only for Good A, 
but also for Good B. Thus, when B’s price increases by 20 percent in period 2, while 
A’s remains unchanged, B’s price just meets its updated reset price from period 1. 
As a result, reset price inflation for period 2 equals zero, despite the same actual 
inflation rate and rate of increase for price changers, respectively 10 percent and 20 
percent, as in period 1.

It is worth making two more distinctions. First, new prices need not be viewed as 
frictionless spot prices. If future spot prices are expected to differ from the current 
spot price, then a newly set price may be influenced by future expected spot prices. 
Thus, reset price inflation can deviate from spot price inflation. (This forward-look-
ing element is present in state-dependent as well as time-dependent sticky price 
models.) Second, those items changing price in a given period may be selected 
based on their idiosyncratic changes in desired prices. This does not happen under 
Calvo (1983) pricing, in which items changing price are chosen at random, but does 
occur in state-dependent pricing models such as Dotsey, King, and Wolman (1999) 
and Golosov and Lucas (2007).

Related, what extra information is contained in ​π​ t​ *​ that cannot be gleaned from ​π​t​ 
alone? With Calvo price setting, ​π​ t​ *​ simply reflects current and lagged inflation

(2)	​ π​ t​ *​  = ​  ​π​t​  −  (1  −  λ)​π​t−1​  __ λ ​ ,

Table 1—Constructing Reset Price Inflation: A Simple Example

Period 0 Period 1 Period 2

Price of Good A 1 1.22 1.22
Inflation for Good A 20% 0%
Reset price for Good A 1 1.22 1.22
Reset inflation for Good A 20% 0%
Price of Good B 1 1 1.22
Inflation for Good B 0% 20%
Reset price for Good B 1 1.22 1.22
Reset inflation for Good B 20% 0%

Inflation (​π​t​) 10% 10%

Inflation for changers (​​     π​​t​) 20% 20%

Reset inflation (​π​ t​ *​ ) 20% 0%

Notes: The example assumes expenditure shares of one half for each good. It also assumes that 
both Good A and Good B exhibited a price change in period 0, establishing the base price for 
calculating reset price inflation for period 1. The number 1.22 in the table represents exp(0.2) 
to two decimal places.
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where λ is the frequency of price change.10 So, under Calvo pricing, one can infer ​
π​ t​ *​ from ​π​t​ given the price-change frequency. But, of course, Calvo pricing may 
poorly reflect reality. Endogenous timing of price changes and selection will break 
this simple mapping from ​π​ t​ *​ to ​π​t​. By endogenous timing we mean any response in 
the fraction of items changing price to underlying shocks. By selection of changers 
we mean that, in contrast to Calvo, the changers may be those with more positive or 
negative gaps between actual and desired prices.

With data on reset inflation, we can directly test whether the joint behavior of reset 
and actual inflation is consistent with Calvo time-dependent pricing. For example, 
from (2), the standard deviation of reset inflation relative to that in actual inflation 
should be

(3)	​ 
​σ​ π​ * ​

 _ ​σ​π​ ​  = ​ √ 
___

   1  +  [2(1  −  ρ)(1  −  λ)/​λ​2​] ​,

where ρ denotes the serial correlation in actual inflation. We will find below that the 
Smets and Wouters (2007) model requires large and transitory markup shocks to 
make inflation as volatile and transitory as it is empirically. But we see in (3) that 
the markup shocks, by bringing down ρ for a given frequency of price change λ, 
necessarily drive up volatility in reset inflation relative to actual. We can compare 
the Calvo-predicted ratio of standard deviations ​ 

​σ​​π​*​​
 _ ​σ​π​ ​ from (3) to its counterpart in the 

data.
Furthermore, even if one rejects a flat short-run Phillips based purely on behavior 

of actual inflation, information on reset inflation would help diagnose the nature 
of any rejection. For instance, low persistence of ​π​t​ could reflect time-varying fre-
quency of price changes or lack of persistence in ​π​ t​ *​. Reset price inflation is more 
directly revealing about strategic complementarities—some forces for low persis-
tence (selection) or high persistence (strategic complementarities) operate on ​π​ t​ *​ 
directly, whereas their effect on ​π​t​ will be clouded by movements in the frequency.

Alternatively, we could focus on the average price change among changers (​​   π​​t​) 
rather than constructing ​π​ t​ *​. That is, we could simply break ​π​t​ into the product of ​​   π​​t​ 
and the fraction of prices changing during t. This would speak to the accuracy of the 
Calvo assumption of a constant frequency of price changes. But it would not shed 
light on the Calvo assumption that price changers are selected randomly (no selec-
tion effect). For this reason we see more power in the statistic ​π​ t​ *​ than in ​​   π​​t​.

II.  Evidence on Inflation and Reset Price Inflation

Here we report statistics on volatility and persistence for both actual inflation 
and our measure of reset price inflation for the bimonths from January–February 
1990 through September–October 2009. Statistics are based on an average of about 
80,000 measured prices per month. The CPI-RDB begins in January 1988, but we 
use the 1988–1989 data to initialize reset prices. We must observe a new (changing) 
price for a quote-line before it can enter our calculation of reset price inflation. By 

10 This holds in the limit as the number of price setters becomes large.
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1990 the fraction of items eligible for calculating reset price inflation is close to its 
sample mean. All the series are seasonally adjusted by taking out dummies for each 
bimonth over 1990 –2009.

In addition to the aggregate statistics, we examine actual and reset price inflation 
for four subaggregates: food and energy versus core, and “flexible” items versus 
“sticky” items. The BLS places individual price quote-lines into about 300 catego-
ries (ELIs). The ELIs are easily categorized as either core (68 percent of expenditure 
weight) or food and energy (32 percent). For the flexible versus sticky categoriza-
tion, we calculate the average frequency of regular price changes within each ELI, 
then classify quote-lines as flexible or sticky based on their ELI’s frequency. We 
choose a threshold frequency separating the two groups of one third, not far from 
the overall weighted mean bimonthly frequency of 31.2 percent. This generates a 66 
percent share of spending on the sticky group compared to 34 percent on the flexible 
group. Having more price quotes in the sticky group mitigates sampling error there, 
given its smaller number of price changes per period. The flexible items average 
22,760 price quotes per month, compared to 57,592 for the sticky items. The mean 
frequency of price changes is 57 percent in the flexible group, while only 18 percent 
for the sticky.

While there is overlap between food and energy and the flexible group (and there-
fore between core items and sticky items), it is far from perfect. Restaurant menu 
prices, a big category of food expenditures, are in the sticky group. Core items 
such as vehicles and airfares exhibit frequent price changes, and fall in the flexible 
group. As a result, the frequency of price changes is not much lower for core items 
(29 percent) than it is for food and energy items (36 percent). Some of the core 
goods that are in the flexible group are particularly cyclical—vehicles and airfares 
are again two examples. Klenow and Malin (2011) show, more generally, that there 
is a clear positive relationship across goods between the frequency of price change 
for a good and cyclicality of its output.

We calculate reset price inflation using formula (1) for each of 64 BLS expendi-
ture classes (cereal, computers, medical services, legal services, and so on), before 
aggregating into one of the four subgroups or overall. We do the same in calculating 
actual inflation at the aggregate level. Constructing reset price inflation at the EC 
level first means we do not infer reset prices across disparate items (e.g., basing 
legal services on computers) and prevents overweighting of ECs with frequent price 
changes in calculating aggregates.

The first row of Table 2 shows the standard deviation of bimonthly inflation is 
0.52 percent (standard error 0.03 percent). Rows two and three examine inflation 
persistence. Inflation exhibits a serial correlation of 0.27 (standard error 0.09). This 
is lower than reported in some other studies, namely because of the time period 
1990 –2009. Longer time series— extending back to the 1970s or earlier— exhibit 
much more persistence. Persistence fell markedly by the time our sample begins. 
See Nason (2006), Stock and Watson (2007, 2009), Benati (2008), and Cogley, 
Primiceri, and Sargent (2010).

Persistence in inflation is low even at longer horizons. In the third row of 
Table 2 we report the cumulative impulse response at a  one-year horizon. This is 
the impact of an inflation impulse on the price level one-year hence. We estimate 
it from an ARMA (6,6) process for inflation, with the number of lags chosen 
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based on the Akaike criterion.11 The impact of a 1 percent impulse in inflation on 
the price level is 0.90 percent (standard error 0.35 percent) after one year. Figure 
1 presents the impulse response function going out 15 bimonths (30 months, or 
2.5 years). The level response in prices builds modestly in the first couple of 
periods, to just under 1.4, but then gradually declines back to its initial impact 
within the 15 periods.

The fourth through sixth rows of Table 2 report statistics for reset price infla-
tion. Reset inflation is more volatile than actual inflation, with a standard devia-
tion of 0.66 percent (standard error of 0.04 percent). There is no persistence 
in reset price inflation as measured by its first-order autocorrelation of 0.06 
(standard error 0.14). Row six reports the cumulative impulse response—the 
impact on the reset price level—at a one-year horizon. (Estimates are based on 
an ARMA(6,6) process for reset inflation). The impact on the reset price of a 1 
percent innovation is less than one-for-one at the one-year horizon, equaling 0.61 
(with standard error 0.28). Figure 2 displays the impulse response function up 
to 2.5 years. The response in reset prices is considerably greater on impact than 
over time. The impact effect is more than double the long-run response. So reset 
prices do not build.

As discussed at the end of Section I above, the ratio of the standard deviations 
for reset versus actual inflation provides a direct test of Calvo pricing, as ​ 

​σ​​π​*​​
 _ ​σ​π​ ​ equals ​

√ 
__

   1 + 2(1 − ρ)(1 − λ)/​λ​2​ ​ under Calvo, where λ is the frequency of price change 
and ρ is the serial correlation in actual inflation. For the set of all goods, given 
λ = 0.31 and ρ = 0.27, the Calvo-implied value for ​ 

​σ​​π​*​​
 _ ​σ​π​ ​ is 3.4. By contrast, this ratio 

from the data is only 1.3. So the Calvo model exaggerates ​ 
 ​σ​​π​*​​

 _ ​σ​π​ ​ by a factor of 2.5. 
Another way to see the magnitude of this discrepancy is to ask what bimonthly fre-
quency of price setting under Calvo actually would be consistent with the observed 

11 The number of significant lags may partly reflect sampling error (see Granger and Morris 1976). We discuss 
sampling error in greater detail below in contrasting model and data statistics.

Table 2—Summary Statistics for Reset and Actual Price Inflation

Statistic All items Food & energy Core Flexible items Sticky items

Standard deviation of π 0.52% 1.38% 0.22% 1.44% 0.16%
(0.03) (0.09) (0.01) (0.09) (0.01)

Serial correlation of π 0.27 0.22 0.33 0.25 0.64
(0.09) (0.09) (0.13) (0.11) (0.07)

1-year cumulative π 0.90 0.76 1.29 0.83 2.90
(0.35) (0.28) (0.24) (0.30) (0.68)

Standard deviation of ​π​*​ 0.66% 1.53% 0.50% 1.59% 0.44%
(0.04) (0.10) (0.03) (0.10) (0.03)

Serial correlation of ​π​*​ 0.06 0.19 −0.34 0.16 −0.37
(0.14) (0.11) (0.07) (0.14) (0.09)

1-year cumulative ​π​*​ 0.61 0.71 0.75 −0.18 0.45
(0.28) (0.43) (0.12) (0.80) (0.20)

Notes:  All data are from the CPI-RDB. Samples run from January–February 1990 through September–October 
2009. The threshold frequency of regular price changes is one-third per bimonthly period: quote-lines in ELIs with 
average frequency higher than one-third are in the flexible group, and those with lower frequency are in the sticky 
group. All series are seasonally adjusted. Standard errors, with Newey-West correction, are in parentheses.
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Figure 1. Empirical Impulse Response of Actual Prices, All Items

Notes: Estimates are accumulated responses to an ARMA(6,6) for actual price inflation. 
Shaded area denotes 95 percent confidence intervals.

Figure 2. Empirical Impulse Response of Reset Prices, All Items

Notes: Estimates are accumulated responses to an ARMA(6,6) for reset price inflation. 
Shaded area denotes 95 percent confidence intervals.
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values of ρ = 0.27 and ​ 
​σ​​π​*​​

 _ ​σ​π​ ​ = 1.3. The required value is 76 percent. That is, the joint 
behavior of actual and reset inflation would be consistent with the Calvo model if 
sellers change prices more frequently than observed (31 percent).

The remaining four columns of Table 2 repeat the statistics from the first col-
umn for the food and energy, core, flexible and sticky groups, respectively. The 
motivation is that large, transitory shocks may be hitting the food and energy (or 
flexible) sector, masking the telltale predictions of a flat short-run Phillips curve. By 
separately examining core (and sticky) inflation, we might isolate a clearer reflec-
tion of New Keynesian price dynamics.

As expected, actual inflation is much more volatile for food and energy items, with 
a standard deviation about six times higher than that for the core items. Reset price 
inflation is also more volatile for food and energy (standard deviation of 1.5 per-
cent) than in the core sector (standard deviation of 0.5 percent). Core inflation is 
only somewhat more persistent than food and energy inflation as measured by its 
serial correlation (0.3 versus 0.2). After one year, the estimated impulse responses 
are about 70 percent larger for core items as for food and energy. But, even for core 
items, this impact is only 1.3 times the initial impact, so price responses build only 
modestly. Perhaps surprisingly, food and energy displays a higher serial correlation 
in its reset price inflation (around 0.2) than do core items (around −0.3). But after 
one year this pattern is eliminated. For both groups of items the cumulative impact 
at one year of an innovation to reset inflation is about 0.7, with the 95 percent con-
fidence interval for this impact on reset price below 1.5 for food and energy goods, 
and below 1.0 for core.

The last two columns of Table 2 report statistics for items with frequent versus 
infrequent price changes (i.e., flexible items versus sticky items). Actual inflation is 
much more volatile for flexible items, with a standard deviation nine times that of 
sticky items (1.44 percent versus 0.16 percent). This reflects, in part, the important 
smoothing effect of many unchanging prices in the sticky sector. But even reset 
price inflation is more volatile in the flexible sector, by more than a factor of three 
(1.59 percent versus 0.44 percent).12

Actual inflation clearly shows more persistence for the sticky group. The serial 
correlation for sticky items is around 0.6, whereas for flexible items it is 0.25. This 
fits the prediction of many sticky price models that infrequent price changes act as 
a force for inflation inertia. This is reflected in the impulse responses as well. For 
sticky items a 1 percent impulse in actual inflation builds to nearly 3 percent after a 
year, whereas for flexible items the initial impact has been cut 20 percent by the end 
of a year. Figures 3 and 4 depict the estimated responses to a 1 percent impulse for 
flexible and sticky items, respectively.

For reset inflation, the serial correlation is markedly negative at −0.4 for sticky 
items, but not for flexible items (0.2). Based on the estimated impulse responses, 
reset prices do not build for either set of items. For the flexible group, the cumulative 
impact at one year is −0.2, while for sticky items it is 0.5. For both sets of items, the 

12 The correlation between actual inflation rates in the flexible and sticky sectors is −0.02, while the correlation 
between reset inflation rates is 0.12. The aggregate actual inflation rate is correlated 0.98 with inflation in the flex-
ible sector and 0.19 with inflation in the sticky sector. The aggregate reset inflation rate is correlated 0.89 with reset 
inflation in the flexible sector and 0.55 with reset inflation in the sticky sector.
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Figure 3. Empirical Impulse Response of Actual Prices, Flexible Items

Notes: Estimates are accumulated responses to an ARMA(6,6) for actual price inflation.  
Shaded area denotes 95 percent confidence intervals.

Figure 4. Empirical Impulse Response of Actual Prices, Sticky Items

Notes:  Estimates are accumulated responses to an ARMA(6,6) for actual price inflation.  
Shaded area denotes 95 percent confidence intervals.
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Figure 5. Empirical Impulse Response of Reset Prices, Flexible Items

Notes:  Estimates are accumulated responses to an ARMA(6,6) for reset price inflation.  Shaded 
area denotes 95 percent confidence intervals.

Figure 6. Empirical Impulse Response of Reset Prices, Sticky Items

Notes:  Estimates are accumulated responses to an ARMA(6,6) for reset price inflation.  Shaded 
area denotes 95 percent confidence intervals.
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95 percent confidence interval for the impact after one year lies below 1.4. Figures 5 
and 6 depict the estimated responses in reset prices out 2.5 years. For sticky items, 
as well as flexible, the longer-run impact remains below the initial impact.

We also constructed series solely for services, the sector with the least frequent 
price changes. (Services display relatively little volatility of spending, making sec-
toral shocks of less concern.) The results for both reset and overall inflation closely 
parallel those for the sticky sector reported in Table 2.

The price series (actual and reset) described in Table 2 reflect sale prices as well as 
regular prices. The results, however, do not hinge on this treatment. Table 3 repeats 
all statistics from Table 2 but treats sales prices as temporarily missing, carrying 
forward the most recent regular price as the price for that month à la Nakamura and 
Steinsson (2008). The patterns highlighted from Table 2 carry over. In particular, 
the serial correlation of actual inflation is almost unchanged at 0.26 (versus 0.27 
in Table 2), and reset price inflation continues to show little serial correlation at 
0.13 (versus 0.06 in Table 2). This means that sale prices either wash out in the 
aggregate or mimic the persistence in regular prices (see Klenow and Malin 2011). 
The impulse responses for actual and reset prices, reported above, likewise do not 
reflect temporarily sales. Figures 7 and 8 give, respectively, the own responses to a 
1 percent impulse in actual and reset price ignoring sales price changes. The figures 
are very similar to their counterparts with sales (Figures 1 and 2): the actual price 
levels off at near one-for-one, while the response in reset price declines with time.

The most notable change in persistence from Table 2 to Table 3 is for actual infla-
tion for sticky-price items. Its serial correlation is 0.82 after dropping sale prices in 
Table 3 (versus 0.64 in Table 2), and its impulse response builds by a factor of nearly 
five after a year. But the serial correlation and impulse responses, even for actual 
inflation, are largely unchanged by dropping sales in the other three groups (food 
and energy, core, and flexible).

Table 3—Summary Statistics Excluding Sale Prices

Statistic
All

items
Food & 
energy Core

Flexible 
items

Sticky 
items

Standard deviation of π 0.51% 1.37% 0.19% 1.43% 0.14%
(0.03) (0.09) (0.01) (0.09) (0.01)

Serial correlation of π 0.26 0.21 0.33 0.24 0.82
(0.09) (0.09) (0.13) (0.11) (0.06)

1-year cumulative π 0.91 0.92 1.41 0.53 4.82
(0.36) (0.20) (0.18) (0.34) (0.81)

Standard deviation of ​π​*​ 0.63% 1.56% 0.42% 1.60% 0.38%
(0.04) (0.10) (0.03) (0.10) (0.03)

Serial correlation of ​π​*​ 0.13 0.18 –0.23 0.15 –0.12
(0.13) (0.12) (0.08) (0.14) (0.12)

1-year cumulative ​π​*​ 0.79 0.65 0.93 0.45 0.94
(0.33) (0.28) (0.14) (0.35) (0.40)

Notes: All data are from the CPI-RDB. Samples run from January 1990 through October 
2009. The threshold frequency of regular price changes is one-third per bimonthly period: 
quote-lines in ELIs with average frequency higher than one-third are in the flexible group, and 
those with lower frequency are in the sticky group. All series are bimonthly and are seasonally 
adjusted. Standard errors, with Newey-West correction, are in parentheses.
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Figure 7. Empirical Impulse Response of Actual Prices,  
All Items Excluding Sale Prices

Notes: Estimates are accumulated responses to an ARMA(6,6) for actual price inflation.  
Shaded area denotes 95 percent confidence intervals.

Figure 8. Empirical Impulse Response of Reset Prices,  
All Items Excluding Sale Prices

Notes: Estimates are accumulated responses to an ARMA(6,6) for reset price inflation.  
Shaded area denotes 95 percent confidence intervals.
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III.  Sticky Price Models, Inflation, and Reset Price Inflation

Sticky price models have predictions for reset price inflation. In an earlier working 
paper version (Bils, Klenow, and Malin 2009), we illustrated these predictions using 
models with one or two aggregate shocks, time-dependent versus state-dependent 
pricing, and one potential source of strategic complementarities (sticky intermediate 
prices). Here we adapt the widely used Smets and Wouters (2007) DSGE model, 
which contains more shocks and more complementarities. The Smets-Wouters (SW) 
model has the further advantage of including an estimated Taylor Rule for monetary 
policy as part of Bayesian estimation of parameters to fit US time series.

We adapt the SW model in several ways. First, we reestimated their quarterly 
model on bimonthly data from 1990 –2009 to allow comparison with the bimonthly 
statistics in the previous section. We construct the natural monthly analogs for most 
of Smets-Wouters’s observable variables and use Stock and Watson’s (2010) monthly 
data for output, investment, and price deflators. We then aggregate these monthly 
series to bimonthly for our estimation.13 We also switch from the GDP deflator to 
the consumption deflator, as the inflation rate in the SW model corresponds to that 
for consumer goods.

Column 1 in Table 4 contains moments from our reestimated, bimonthly version 
of the SW model. As there are 119 bimonthly observations in our CPI sample, all 
model statistics are means (and standard deviations) of each moment across 100 
simulated samples of 119 periods. For comparison, column 5 reports correspond-
ing statistics from the 1990 –2009 CPI-RDB dataset. The model in column 1 fits 

13 In an online “SW Appendix” we provide more details on how we construct the bimonthly data for our estima-
tion and convert nonestimated parameters from quarterly to bimonthly parameters.

Table 4 —Summary Statistics for One-Sector Smets-Wouters Models

Statistic

Estimated 
bimonthly 

1990 –2009 
(1)

Dropping the 
price markup 
shocks in (1)

(2)

Imposing the 
BLS frequency 

(31.2%)
(3)

Dropping the 
price markup 
shocks in (3)

(4)

Data for 
all 

items
(5)

Standard deviation of π 0.32% 0.09% 0.33% 0.12% 0.52%
(0.02) (0.03) (0.02) (0.03) (0.03)

Serial correlation of π 0.18 0.97 0.20 0.91 0.27
(0.08) (0.01) (0.09) (0.04) (0.09)

1-year cumulative π 1.08 10.67 1.36 5.59 0.90
(0.31) (1.53) (0.32) (0.98) (0.35)

Standard deviation of ​π​*​  1.15% 0.17% 0.66%
(0.09) (0.02) (0.04)

Serial correlation of ​π​*​ –0.38 0.43 0.06
(0.07) (0.13) (0.14)

1-year cumulative ​π​*​ 0.45 2.19 0.61
(0.16) (0.49) (0.28)

Slope of the SR Phillips Curve 0.0007 0.0006 0.0042 0.0034

Notes: In columns 1–4, statistics are averages across 100 model simulations, each of 119 periods. Standard devia-
tions across simulations are in parentheses. Column 5 is based on data from the CPI-RDB for January–February 
1990 through September–October 2009, with robust standard errors in parentheses.



2814 THE AMERICAN ECONOMIC REVIEW october 2012

inflation persistence well—its serial correlation is only one standard error from the 
data (alternatively, about one standard deviation away across simulated samples). 
But this model falls short on inflation volatility (standard deviation 0.32 percent in 
the model versus 0.52 percent in the data).14

As Smets and Wouters (2007) make clear, much of the inflation variance in their 
model is driven by price markup shocks, especially at short horizons. To illustrate, 
column 2 of Table 4 provides model statistics when we drop these price markup 
shocks entirely. In doing so we reestimate the other parameter values, including 
shock processes for wage markups, general TFP, investment-specific TFP, govern-
ment spending, the stochastic discount rate, and monetary policy.15 The standard 
deviation of inflation falls from 0.32 percent to 0.09 percent. It is now less than 
one-fifth of the empirical standard deviation of 0.52 percent. The serial correlation 
of inflation in the model soars to 0.97 (standard deviation 0.01 across simulations), 
far above the data’s 0.27 (standard error 0.09).

Dropping the markup shocks has little effect on the model’s implications for out-
put and other real variables. For example, the standard deviation of output growth 
for the models shown in columns 1–4 of Table 4 ranges between 1.90 and 1.95 (stan-
dard deviation 0.15 across simulations), compared to 1.85 in the data.

For each model column in Table 4, we also estimate the impulse response func-
tion (IRF) from a univariate ARMA(6,6) on inflation. For the model without price 
markup shocks in column 2, the IRF builds sharply. After a 1 percent innovation to 
the aggregate price level, the aggregate price level is up 10.7 percent one year later 
(standard deviation 1.5 percent across simulations). This price buildup is in stark 
contrast to the data, where the one-year cumulative response is no higher than the 
impact effect of 1 percent (0.90 with a standard error of 0.35).

Why is inflation volatility so low and persistence so high in the SW model with-
out price markup shocks? The bottom of Table 4 provides the slope of the short-run 
Phillips curve. In columns 1 and 2 the slope is very flat: a 1.0 percent increase in real 
marginal cost raises current inflation by only 0.0007 percent and 0.0006 percent, 
respectively. Movements in marginal cost have little impact on current inflation, 
and take many periods to fully pass through to prices. Of course, this flat short-run 
Phillips curve is integral to how the SW model produces realistic fluctuations in real 
output, especially in response to monetary policy shocks.

Again, to mimic the volatile and transitory behavior of actual inflation despite a 
flat short-run Phillips curve, the Smets-Wouters (2007) model includes a shock to 
the desired price markup over marginal cost. This price markup shock must be large, 
transitory, and common to all sellers. Given the minimal pass-through built into 
the flat short-run Phillips curve, the standard deviation of the shock to the current 
desired price must be 453 percent per bimonth. This is almost 1,000 times bigger 

14 For the model estimation, inflation is defined as the growth rate of the PCE deflator, which had a standard 
deviation of 0.33 percent and serial correlation of 0.13 over our sample period. We estimate using the PCE defla-
tor because it is the closest counterpart to the model’s price index, but we assess the model using the CPI-RDB so 
we can compare actual to reset price inflation. As we shall see, however, our main conclusions in the remainder of 
the paper would remain unaffected if we used the PCE deflator rather than the CPI-RDB for our measure of actual 
inflation in column 5.

15 For the estimation, we replace the price markup shock with a measurement error shock to the inflation series. 
A benefit of this approach is that, when we subsequently drop the measurement error shock in the simulations of 
the estimated model, this alters the model’s implications only for inflation and not for other observable variables.



2815bils et al.: Reset Price InflationVOL. 102 NO. 6

than the standard deviation of actual inflation.16 De Walque, Smets, and Wouters 
(2006) suggest smaller, more reasonable shocks might work if the shocks hit only 
flexible-priced goods such as food and energy. We will pursue this possibility sys-
tematically below. In the meantime, we elaborate on the one-sector model.

The entries for reset price inflation are empty in the first two columns of Table 4 
for a simple reason: nonadjusting prices are indexed in the Smets-Wouters model, 
either to steady-state inflation or last period’s inflation. The SW model does not 
feature any nominal price stickiness, only relative price stickiness. As a result, reset 
price inflation is identical to actual inflation in the SW model. As nominal price 
stickiness is very much a feature of the CPI data, from here forward we constrain 
the SW model to feature no nominal price change among nonadjusters. We avoid 
price indexation altogether because price changes on the order of a few tenths of a 
percent—as needed to keep up with average or lagged inflation—are uncommon in 
the CPI micro data (see Klenow and Kryvtsov 2008).

Next in Table 4 (columns 3 and 4) we report moments after reestimating the SW 
model subject to a price change frequency of 31.2 percent, which is the overall 
weighted mean bimonthly frequency in our BLS sample. In contrast, the Bayesian 
estimated frequency of price changes beneath column 1 was 8.2 percent, and that in 
column 2 was 7.6 percent. Column 3 allows for price markup shocks, while column 
4 reestimates dropping these shocks. Because we pin down the frequency from the 
micro data, we are able to estimate the Kimball-kink pricing parameter. (SW set 
this exogenously to 10.) Our point estimate is 47.3 allowing markup shocks, and 
54.1 without those shocks. The greater price flexibility in columns 3 and 4 makes 
the Phillips curve steeper, though this is partially offset by the more severe Kimball 
kink. On net it becomes six times steeper— e.g., a slope of 0.0034 in column 4 ver-
sus 0.0006 in column 2.

Comparing the models in columns 2 and 4, both without markup shocks, we see 
that the steeper Phillips curve makes inflation a bit more volatile and transitory. Still, 
model inflation in column 4 is far too stable (0.12 percent model standard deviation 
versus 0.52 percent in the data) and far too persistent (serial correlation 0.91 versus 
0.27 in the data, and IRF after one year of 5.6 versus 0.9 in the data). As seen in 
comparing 1 and 2, if we allow sufficiently large and transitory markup shocks, then 
the model can do better in generating volatility in inflation. For the model in 3, the 
markup shocks nearly triple inflation’s standard deviation while cutting its persis-
tence considerably. (The one-year impulse for inflation is cut from 5.0 to 1.4, much 
closer to the data’s level of 0.9.)

Columns 3 and 4 of Table 4 also provide our first look at reset price inflation in 
the SW model, as distinct from actual inflation. Without markup shocks (column 4) 
the serial correlation of reset price inflation is 0.43 (above the data’s 0.06); and the 
IRF accumulates to 2.2 percent after one year versus only 0.6 percent in the data.

With the markup shocks (column 3), the behavior of reset price inflation is very 
different. In order to cut persistence in actual inflation, the markup shocks in the SW 
model must hit reset price inflation more dramatically. Comparing columns 3 and 4, 

16 See Chari, Kehoe, and McGrattan (2009) for a related critique of the SW model’s wage markup shocks. 
Justiniano, Primiceri, and Tambalotti (2011) contend these shocks can be largely replaced by measurement error in 
wages. In contrast, we will find only a small role for sampling error in aggregate inflation.
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the markup shocks increase the standard deviation of reset inflation by a factor of 
nearly seven. With the markup shocks, the standard deviation of reset inflation is 
predicted to be 3.5 times larger than for actual inflation, whereas in the data it is 
only modestly larger (0.66 percent versus 0.52 percent). As discussed in Section II, 
the bigger impact on reset inflation reflects that, under Calvo pricing, ​ 

​σ​​π​ *​​ _ ​σ​π​ ​ equals ​

√ 
__

   1 + 2(1 − ρ)(1 − λ)/​λ​2​ ​.

The markup shocks also generate a mismatch in the relative persistence of reset 
and actual inflation. With the markup shocks, the model’s one-year impulse response 
in actual prices is three times that in reset inflation, whereas in the data that ratio is 
only one and a half. So we see that, although sufficiently large markup shocks can 
generate realistic volatility and persistence of actual inflation, this creates unrealistic 
behavior of reset inflation relative to actual inflation.

Could sampling error close the gap between the SW model and the inflation 
facts? Columns 1–4 of Table 4 already incorporate time series sampling error by 
taking means and standard deviations across short (119 month) simulated time 
series. In Table 5 we add an additional, cross-sectional source of sampling error. 
The CPI is an aggregate of a finite sample of individual prices. The SW model, in 
contrast, contains a continuum of prices and, hence, no idiosyncratic noise. Such 
sampling error may add volatility and pull down the persistence of actual and reset 
price inflation.

Based on looking at replicate subsamples, Shoemaker (2004 to 2010) estimates 
the standard deviation of cross-sectional sampling error in the CPI. He provides 
estimates for each year from 2003 to 2009, for inflation at horizons of one, two, and 
six months, and for subaggregates as well as the overall CPI. He estimates a stan-
dard deviation from sampling error for bimonthly inflation for the entire CPI that 

Table 5—One-Sector Smets-Wouters with Sampling Error

Statistic

(4) from
Table 4 

(1)

Adding 
cross-sectional 
sampling error

(2)

Data for 
all items

(3)

Standard deviation of π 0.12% 0.12% 0.52%
(0.03) (0.03) (0.03)

Serial correlation of π 0.91 0.85 0.27
(0.04) (0.07) (0.09)

1-year cumulative π 5.59 4.42 0.90
(0.98) (0.86) (0.35)

Standard deviation of ​π​*​ 0.17% 0.20% 0.66%
(0.02) (0.02) (0.04)

Serial correlation of ​π​*​ 0.43 0.19 0.06
(0.13) (0.16) (0.14)

1-year cumulative ​π​*​ 2.19 1.77 0.61
(0.49) (0.39) (0.28)

Slope of the SR Phillips Curve 0.0034 0.0034

Notes: In columns 1 and 2, statistics are averages across 100 model simulations, each of 119 periods. Standard devi-
ations across simulations are in parentheses. In column 2 statistics take into account sampling error from a finite 
number of prices in the cross-section. Column 3 is based on data from the CPI-RDB for January–February 1990 
through September–October 2009, with robust standard errors in parentheses.
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Figure 9. SW Model Impulse Response of Actual Prices

Notes: Estimates are accumulated responses to an ARMA(6,6) for actual price inflation.  
Shaded area denotes 95 percent confidence intervals for estimates based on CPI-RDB data 
for all items.

Figure 10. SW Model Impulse Response of Reset Prices

Notes: Estimates are accumulated responses to an ARMA(6,6) for reset price inflation.  
Shaded area denotes 95 percent confidence intervals for estimates based on CPI-RDB data 
for all items.
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averages 0.077 percent for the seven years. For our sample of goods, which excludes 
housing services, his estimates imply a bimonthly sampling error of 0.094 percent. 
As the standard deviation of bimonthly inflation is 0.52 percent in our 1990–2009 
sample, Shoemaker’s estimates imply that 3.3 percent of the variance of observed 
bimonthly inflation stems from sampling a finite set of prices. For inflation at the 
six-month horizon, Shoemaker’s estimates yield a standard deviation from sampling 
error of 0.142 percent for our sample of goods. Based on the higher variance for 
sampling error at six versus two months, we can infer that the idiosyncratic price 
movements underlying this sampling error are reasonably persistent.

To capture sampling error we simulate Calvo time-dependent pricing, as in Table 4, 
but allow for persistent, idiosyncratic cost shocks to price setters. We perform 100 
simulations of the model each for a sample of 80,000 price setters, matching the size 
of our BLS bimonthly sample. For each simulation, we calculate bimonthly and six-
month inflation rates. We calibrate the standard deviation of the idiosyncratic shocks 
to replicate the share of sampling error in the variance of measured inflation implied 
by Shoemaker’s estimates. We calibrate the persistence of the idiosyncratic shocks 
so that the relative standard deviation for its six-month versus bimonthly inflation 
also matches Shoemaker. This requires an AR(1) parameter for these shocks of 0.73. 
We sum the inflation series drawn from one of 100 simulations of the SW model 
with the inflation series drawn from one of 100 simulations of the Calvo model with 
idiosyncratic shocks. We then recalculate statistics based on the sum of these two 
series. We repeat this process 100 times, sampling with replacement.

Column 2 of Table 5 shows the outcome of adding this cross-sectional sampling 
error to the SW model. Column 1, for comparison, repeats model results without 
sampling error from column 4 of Table 4. The impact is modest. The standard 

Table 6—One-Sector Smets-Wouters without Complementarities

Statistic

(2) from
Table 5

(1)

(1) minus
Kimball Kink for
final goods and

for labor
(2)

(2) minus
sticky wages

and wage
indexation

(3)

Data 
for  

all items
(4)

 Standard deviation of π 0.12% 0.91 1.20  0.52%
(0.03) (0.16) (0.18) (0.03)

Serial correlation of π 0.85 0.78 0.71 0.27
(0.07) (0.07) (0.08) (0.09)

1-year cumulative π 4.42 3.79 3.20 0.90
(0.86) (0.89) (0.75) (0.35)

Standard deviation of ​π​*​ 0.20% 1.77 2.63 0.66%
(0.02) (0.13) (0.19) (0.04)

Serial correlation of ​π​*​  0.19 0.11 0.03 0.06
(0.16) (0.11) (0.10) (0.14)

1-year cumulative ​π​*​ 1.77 1.41 1.13 0.61
(0.39) (0.38) (0.34) (0.28)

Slope of the SR Phillips curve 0.0034 0.137 0.137

Notes: In columns 1–3, statistics are averages across 100 model simulations, each of 119 periods. Standard devia-
tions across simulations are in parentheses. These statistics take into account sampling error from a finite number 
of prices in the cross-section. Column 4 is based on data from the CPI-RDB for January–February 1990 through 
September–October 2009, with robust standard errors in parentheses.
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deviations increase only slightly. For actual inflation, the impact on serial correlation 
is small, going from 0.91 to 0.85. Sampling error does reduce the serial correlation 
of reset price inflation in the model considerably, from 0.43 to 0.19. But the one-year 
impulse responses are only modestly reduced (from 2.2 to 1.8) and remain far above 
those reported for the data in the last column of the table.

Figures 9 and 10 demonstrate the model IRFs for inflation and reset inflation over 
30 months once we allow for cross-sectional sampling error. The initial response in 
reset prices accumulates to a factor of 2.4; the response in actual prices ascends to 
a factor of almost seven. These model IRFs differ starkly from the flat or declining 
empirical IRFs for reset and actual inflation. The large disparities between model 
and data are statistically significant, judging by either the standard error in the data 
IRFs or by the standard deviation of the SW model IRFs. In short, from Table 5 and 
these figures, we see sampling error does little to diminish the excess smoothness 
and inertia in model inflation and reset price inflation.

To recap, actual inflation for the model, absent enormous markup shocks, is too 
stable and too persistent compared to the data. Much of this discrepancy is mirrored 
in reset prices. The model’s standard deviations in reset and actual inflation are each 
less than 30 percent of that in the data. Consider next the IRF after 30 months in the 
model relative to the data. For reset prices this ratio is very large at 5.5, while for 
actual prices it is even larger at 6.5. The upshot is that the discrepancy comes largely 
from reset prices, reinforced by how the model translates reset price inflation into 
actual inflation.

A. Complementarities and Reset Inflation

Why does the SW model imply too much persistence in reset and actual infla-
tion? Table 6 provides evidence on the role played by complementarities. Column 
1 of Table 6 repeats the statistics for Table 5, column 2—the estimated model with 
sampling error and no markup shocks. The subsequent columns sequentially shut 
down complementarities without reestimating. First we get rid of the Kimball 
“kink” in the demand curve facing individual price setters (firms) and wage setters 
(workers) in column 2. When the elasticity of demand is no longer increasing in an 
item’s relative price, price setters more freely pass marginal costs into prices. They 
do not wait so much for other prices to adjust despite the lack of synchronization 
endemic to Calvo pricing. The slope of the short-run Phillips curve increases from 
0.34 percent to 13.7 percent. As a result, the standard deviation of inflation rises 
by a factor greater than seven, and the standard deviation of reset price inflation by 
almost a factor of nine.17 In addition, all persistence measures fall. The IRF for reset 
prices becomes 1.4 after one year, compared to 1.8 in column 1. After 30 months 
the response is only 1.6, compared to 2.4 (see Figure 10) for the economy with all 
complementarities in column 1.

In column 3 of Table 6 we eliminate both nominal wage stickiness and wage 
indexation. Inflation—and especially reset price inflation—becomes even more 

17 This understates the case. By holding fixed the size of the reduced-form shocks as we peeled away comple-
mentarities, we implicitly scaled down the standard deviation of the desired wage markup from 236 percent in 
column 1 to 39 percent in column 2.
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volatile. They end up too volatile relative to the data, by a factor greater than two for 
inflation and equal to four for reset price inflation. This drives home the role strate-
gic complementarities play in suppressing inflation volatility.

Table 6 held the size of model shocks fixed. The resulting volatility of real out-
put growth is fairly stable as we move from columns 1 to 3. The standard devia-
tion of real output growth is 1.90 percent in model column 3, close to the data’s 
1.85 percent. If we instead scale down all shock standard deviations equally to hit 
the volatility of actual inflation in column 3, the model standard deviation of output 
growth falls to 0.82 percent, less than half the data figure. If we scale down shocks 
sufficiently to match the volatility of reset price inflation, then output variability 
sinks further to 0.50 percent. Thus, the model without complementarities cannot 
simultaneously generate realistic volatility for output growth and inflation.

In the absence of all of these complementarities, reset price inflation builds little 
over time. The serial correlation of reset price inflation, 0.03, is essentially zero as 
in the data. The IRF for reset inflation is 1.1 after one year, and 1.2 after 30 months. 
While above the corresponding data responses, 0.59 and 0.43, this at least stays 
within the data’s confidence interval for the first two years.

Even in this stripped-down SW model, inflation is too persistent relative to the 
data. Its serial correlation is 0.71 (versus 0.27 in the data). Prices build to 3.2 percent 
higher one year after a 1 percent impulse, whereas they do not build at all in the 
data. Thus stripping away the complementarities largely eliminates excess persis-
tence in reset price inflation, but not in actual inflation. Time-dependent pricing 
still adds too much persistence to inflation conditional on reset price inflation.18

18 In Bils, Klenow, and Malin (2009), we illustrate that dropping time-dependent pricing in favor of state-depen-
dent pricing dramatically reduces persistence in both reset and actual inflation. Of course, dropping time-dependent 

Table 7—Two-Sector Smets-Wouters Models

Statistic

1-sector model 
aggregate

(1)

2-sector 
aggregate

(2)

Flexible 
sector
(3)

Sticky
sector
(4)

Standard deviation of π 0.34% 0.79% 1.84% 0.45%
(0.02) (0.07) (0.13) (0.05)

Serial correlation of π 0.19 0.36 0.25 0.47
(0.09) (0.10) (0.10) (0.12)

1-year cumulative π 1.34 1.63 1.02 2.32
(0.38) (0.40) (0.35) (0.47)

Standard deviation of ​π​*​ 1.18% 2.47% 3.17% 1.52%
(0.09) (0.19) (0.22) (0.11)

Serial correlation of ​π​*​ –0.38 –0.26 –0.15 –0.21
(0.06) (0.08) (0.09) (0.10)

1-year cumulative ​π​*​ 0.44 0.54 0.56 0.79
(0.16) (0.21) (0.23) (0.22)

Slope of the SR Phillips curve 0.0042 0.426 0.0011

Notes: Statistics are averages across 100 model simulations, each of 119 periods. Standard 
deviations across simulations are in parentheses. These statistics take into account sampling 
error from a finite number of prices in the cross-section.
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B. Sectoral Shocks

The one-sector models analyzed so far neglect the possibility of large, temporary 
sectoral shocks that do not wash out in the aggregate. Boivin, Giannoni, and Mihov 
(2009) provide evidence that disaggregated inflation rates are much more volatile 
and transitory than aggregate inflation, consistent with such shocks. And De Walque, 
Smets, and Wouters (2006) illustrate how one might replace price markup shocks 
with a productivity shock to a flexible-price sector. We now pursue this possibility.

Our two-sector version of the Smets-Wouters model has the following features. 
Aggregate consumption is a Cobb-Douglas composite of flexible-price consumption 
and sticky-price consumption. Flexible-price consumption is a CES aggregate of 
individual flexible items, whereas sticky-price consumption is a Kimball aggregate 
of individual sticky items. We omit the Kimball kink for flexible goods because 
strong strategic complementarities there would mute the impact of any large transi-
tory shocks in that sector, undermining the point of entertaining such shocks. As in 
De Walque, Smets, and Wouters (2006), instead of an aggregate price markup shock 
there is a productivity shock that hits only the flexible sector (in addition to the com-
mon aggregate shock that hits both sectors). The two sectors compete in the same 
market for labor, which continues to feature sticky wages, indexation, a Kimball 
labor-market kink, and a wage markup shock. Finally, in any given quarter, sector 
capital stocks are predetermined.

We calibrate the two-sector model by exploiting the separate series we constructed 
on inflation (and reset price inflation) for flexible and sticky items. We choose the 
Cobb-Douglas exponents of the consumption aggregator to match consumption 
shares. We impose the BLS pricing frequencies seen for flexible and sticky items, with 
no price indexation for nonadjusters. Finally, we calibrate the two parameters of an 
AR(1) process for the flexible sector productivity shock to match the serial correlation 
and volatility of the (log) of the flexible price relative to the sticky price. The flexible 
sector productivity shock is less persistent (serial correlation of 0.50) than all model 
shocks except the wage markup shock and is more volatile (innovation standard devia-
tion of 0.60) than all shocks except the aggregate productivity shock.

Table 7 presents simulated statistics from this two-sector model. For compari-
son, column 1 starts with a one-sector model containing markup shocks and sam-
pling error. Column 2 provides statistics on the two-sector aggregate, including 
sampling error.19 In terms of persistence, the two-sector model does a fairly good 
job of mimicking the one-sector model with extreme markup shocks. The serial 
correlation in aggregate inflation is 0.36 in the two-sector model versus 0.19 in 

pricing, as with dropping strategic complementarities, undercuts the ability of the sticky price model to generate 
large or persistent output volatility, especially in response to monetary shocks.

19 We calibrate the sampling error for the flexible and sticky sectors based on Shoemaker’s (2004 to 2010) 
estimates of sampling error in inflation for the sectors we classify as flexible (price-change frequency greater than 
one-third) and sticky. We find that sampling error constitutes only 2 percent of the time-series variance of infla-
tion for the flexible sector, but 30 percent for the sticky sector. Sampling error also breaks the direct connection 
between inflation persistence and the relative variability in reset versus actual inflation under Calvo pricing, ​ 

​σ​​π​ *​​ _ ​σ​π​ ​ = ​
√ 
__

   1​ + 2(1 − ρ)(1 − λ)/λ​2​ ​, as in a finite sample there is randomness in whether those sellers drawing a price-
change exhibit above or below average desired price changes. We find this effect of sampling error is unimportant 
for the aggregate model economy or the flexible sector; but, for the sticky sector, it lowers inflation persistence 
without driving up the relative variability of reset to actual inflation so drastically.
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the one-sector model (and 0.27 in the data); and the one-year IRF is 1.6 percent in the 
two-sector model versus 1.3 percent in the one-sector model. Even so, that remains 
nearly double that for the data (0.9 percent). For reset inflation the serial correlation, 
at −0.26, is slightly higher than for the one-sector model and lower than the value 
of zero seen in the data. The one-year IRF for reset inflation nearly matches that for 
the data, as does the one-sector model with aggregate markup shocks.

But the two-sector model also inherits, and even magnifies, the empirical prob-
lems of the one-sector model with markup shocks. In particular, reset inflation for 
the model is far too volatile, both in absolute terms and relative to actual infla-
tion. Its standard deviation for reset inflation, 2.5 percent, is 3.8 times that in the 
data. This 2.5 percent is also more than three times that predicted for actual infla-
tion. By contrast, the data show a standard deviation for reset inflation that is only 
modestly greater (by 26 percent) than for actual. We point out again: this failure 
of the model is a consequence of hitting low inflation persistence, given its time-
dependent pricing.

Columns 3 and 4 of Table 7 report model moments for flexible and sticky sector 
inflation separately. Not surprisingly, inflation is more volatile in the flexible sector. 
This reflects not only the productivity shock hitting the flexible sector, but also the 
quicker pass-through of marginal cost into flexible prices. The slope of the short-run 
Phillips curve is 400 times larger in the flexible sector (43 percent) than in the sticky 
sector (0.11 percent). Nevertheless, the two-sector model doesn’t generate enough 
volatility in the flexible sector relative to the sticky sector, as the ratio of their stan-
dard deviations is 4 in the model versus 9 in the data (see data Table 2 above).

The two-sector model does well in matching inflation persistence in the two sec-
tors. The one-year response in the sticky sector in reset prices is 0.79 percent, not far 
above that in the data. But the model requires far too much volatility in reset price 
inflation to achieve this. For flexible goods, reset price inflation is twice as volatile 
as in the data; for sticky goods, it is 3.5 times as volatile.

The model generates volatility in sticky-sector inflation, despite its very flat 
short-run Phillips curve, because the flexible sector shocks create large transitory 
fluctuations in wages facing the sticky sector. As a result, reset inflation rates in the 
two sectors are highly correlated at 0.72, despite the large relative technology shocks. 
But the data do not show this, displaying a correlation of only 0.12. (For actual infla-
tion rates the model correlation is 0.51, versus −0.02 for the data.) We take this 
as evidence that the two-sector model overstates the importance of flexible-sector 
shocks to sticky-sector prices. Because the model greatly overstates the correlation 
in inflation rates, when the two sectors are aggregated the discrepancy between the 
model and data is more striking. Most notably, the model overstates the standard 
deviation for reset inflation by a factor of 3.8.

IV.  Conclusion

A large empirical literature has estimated that monetary policy shocks affect real 
variables for several years, much longer than the duration of nominal prices. Popular 
machinery to explain these findings combines sticky prices and strategic comple-
mentarities. The complementarities make reset prices build slowly after permanent 
shocks, prolonging the real effects beyond the duration of nominal prices. That is, 
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strategic complementarities impart persistence to reset price inflation relative to the 
persistence in the underlying shocks. Price stickiness imparts further persistence in 
actual inflation relative to reset inflation. The combination succeeds in flattening the 
short-run Phillips curve.

But we do not see persistence in reset price inflation using data underlying the 
US CPI from 1990 –2009. In particular, impulse responses for reset prices are flat or 
declining over 30 months. This statement holds for core goods, as well as food and 
energy goods; it holds for goods with frequent as well as infrequent price changes; 
it holds with or without sale prices (i.e., for regular prices). Over the same period 
persistence in actual inflation has also been modest—impulse responses for actual 
prices build modestly after 30 months for sticky-priced goods, and little, or not at 
all, for all goods taken together.

In theory, low persistence in actual inflation can be reconciled with a flat short-
run Phillips curve provided that desired spot prices—the prices firms would charge 
absent sticky prices—are sufficiently volatile and transitory. Smets and Wouters 
(2007) include large, transitory price markup shocks to accomplish that end. (We 
find that a two-sector model, with large shocks to the flexible-price sector, can 
achieve much the same outcome.) While such shocks help to reconcile the model 
with data on actual inflation, we find they cannot at the same time reconcile the 
model with our data on reset inflation. Because these shocks must be so transitory, 
their impact on reset price inflation is exaggerated compared to that on actual infla-
tion— creating variability in reset price inflation well above that seen in the data. 
This conflict is not specific to the Smets-Wouters model. The modest persistence in 
actual inflation, together with the low variability of reset versus actual inflation, is 
difficult to match with time-dependent Calvo pricing.

Our results suggest the high inflation persistence over longer samples might 
reflect monetary policy rather than a flat short-run Phillips curve. The low inflation 
persistence of recent decades could be because the Fed stopped adding persis-
tence, revealing low endogenous persistence. Cogley and Sargent (2002), Primiceri 
(2006), Cogley and Sbordone (2008), and Benati (2008) all argue that US inflation 
persistence over long samples stems, in part, from monetary regime changes.

Our findings also suggest considering alternatives to Calvo time-dependent 
pricing. State-dependent pricing models are one possibility, but can bring problems 
of their own (e.g., too few small price changes as emphasized by Midrigan 2011). 
And state-dependent pricing models with weak complementarities can generate too 
little output response to monetary shocks. As we see it, an open challenge is to 
reconcile the low persistence of inflation (and low volatility of reset price inflation) 
in recent decades with the VAR evidence that monetary variables exhibit large, sus-
tained real effects.
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