How Much Will Global Warming Cool Global Growth?

Ishan Nath	Valerie Ramey	Pete Klenow
SF Federal Reserve	Hoover Institution & NBER	Stanford & NBER

August 2024

IIES Seminar

Any views expressed in this presentation are those of the authors and do not necessarily reflect those of the Federal Reserve System Introduction

Motivation: Wide Divergence in Climate-GDP Projections

Motivation: Wide Divergence in Climate-GDP Projections

- Prevailing literature: modest impacts
 - IPCC (2014): 1.1% loss of global GDP from 2°C of warming by 2100
 - Barrage & Nordhaus (2024): 1.6% of global GDP from 3°C warming

Motivation: Wide Divergence in Climate-GDP Projections

- Prevailing literature: modest impacts
 - IPCC (2014): 1.1% loss of global GDP from 2°C of warming by 2100
 - Barrage & Nordhaus (2024): 1.6% of global GDP from 3°C warming

- Prominent exception: very large effects
 - Burke, Hsiang, Miguel (2015): 23% of global GDP by 2100
 - $\bullet\,$ Climate change reduces incomes by >80% in 50% of countries

Motivation: Damage estimates are highly influential

- Academic macro papers with a climate damage component
 - e.g. Golosov et al. (2014 ECMA), Acemoglu et al. (2016 JPE), Barrage (2019, REStud)
- Social cost of carbon estimates
 - US EPA Interagency Working Group (Greenstone et al. 2013), Moore & Diaz (2015 Nature CC), Ricke et al. (2018 Nature CC), Burke & Diffenbaugh (2019 PNAS)
- Policy institutions
 - IPCC, EPA, World Bank, IMF, OECD
- Advocacy groups & popular press
 - Cato Institute, Sunrise Movement, Foreign Affairs, New Yorker

Motivation: Why impact estimates diverge

Does a permanent \uparrow in temperature affect long-run growth or levels?

Figure: Effects of Permanent Temperature Change in Year 0

Climate change impacts: permanent level effects

Figure: Percent Change in Annual Income in 2099

Source: Example Using Permanent Level Effect Estimates

Climate change impacts: permanent growth effects

Figure: Percent Change in Annual Income in 2099

Source: Burke, Hsiang, & Miguel (2015)

Key Challenge – Interpreting a Temperature IRF

Figure: Impact of a Temporary Temperature Shock in Year 0

Key Challenge – Interpreting a Temperature IRF

Figure: Implications of Temporary Shock for Projecting Permanent Shock

Key Challenge – Interpreting a Temperature IRF

Figure: Implications of Temporary Shock for Projecting Permanent Shock

This Paper

- Theory and evidence for why country growth rates should not permanently diverge
- New estimates of the temperature-GDP relationship
 - Cross country
 - Dynamic panel
 - Country-by-country time series
- Projections of future climate change impacts based on empirical persistence of temperature effects

- Model estimates suggest growth is linked across countries
 - Permanently diverging growth rates unlikely to occur

- Model estimates suggest growth is linked across countries
 - Permanently diverging growth rates unlikely to occur
- Model predictions for temperature shocks:
 - $\bullet~$ Temporary shock \rightarrow persistent, but not permanent, level effects
 - Permanent increase in temperature \rightarrow temporary growth effect
 - $\bullet\,$ Trending temperature (climate change) $\rightarrow\,$ persistent growth effect

- Model estimates suggest growth is linked across countries
 - Permanently diverging growth rates unlikely to occur
- Model predictions for temperature shocks:
 - $\bullet\,$ Temporary shock \to persistent, but not permanent, level effects
 - Permanent increase in temperature \rightarrow temporary growth effect
 - $\bullet\,$ Trending temperature (climate change) $\rightarrow\,$ persistent growth effect
- We estimate large, persistent effects of temperature on GDP
 - Levels effects, but not growth effects
 - Moderate persistence of temperature itself in hot countries

- Model estimates suggest growth is linked across countries
 - Permanently diverging growth rates unlikely to occur
- Model predictions for temperature shocks:
 - $\bullet\,$ Temporary shock \to persistent, but not permanent, level effects
 - Permanent increase in temperature \rightarrow temporary growth effect
 - $\bullet\,$ Trending temperature (climate change) $\rightarrow\,$ persistent growth effect
- We estimate large, persistent effects of temperature on GDP
 - Levels effects, but not growth effects
 - Moderate persistence of temperature itself in hot countries
- Projections \implies warming reduces global GDP 6-12% by 2100

Results Preview: Our Projections

Figure: Percent Change in Annual Income in 2099

Key caveat: not a comprehensive welfare estimate

- Non-market damages (e.g. mortality, civil conflict)
 - e.g. Hsiang, Burke, & Miguel (2013), Carleton et al. (2022)
- Non-temperature effects (e.g. hurricanes, coastal flooding)
 - e.g. Desmet et al. (2021), Balboni (2021), Fried (2022)
- Tipping points
 - e.g. Lemoine & Traeger (2016), Dietz et al. (2021)
- Uncertainty and risk aversion
 - e.g. Weitzman (2009), Traeger (2014), Barnett, Brock, & Hansen (2020), Lemoine (2021), Nath et al. (2022)
- Adaptation
 - e.g. Moscona & Sastry (2021), Cruz & Rossi-Hansberg (2021)

Related Literature

- Panel and time-series estimates of temperature and output
 - Country-level data: Dell, Jones, & Olken (2012); Burke, Hsiang, & Miguel (2015); Acevedo et al. (2020); Berg, Curtis, & Mark (2021); Newell, Prest, & Sexton (2021); Bastien-Olvera, Granella, & Moore (2022)
 - Sub-national data: Colacito, Hoffman, & Phan (2019); Burke & Tanutama (2019); Bilal and Kaenzig (2024)
- Empirical climate-GDP projections informed by growth models
 - Kahn et al. (2019); Kalkuhl & Wenz (2020); Casey, Fried, & Goode (2022)

2 Are Country Growth Rates Connected?

3 Panel Estimates

Projections

- Domestic production draws on domestic and international technology
- In the absence of shocks, countries converge to parallel TFP growth paths with a stationary distribution of relative TFP levels
- Speed of convergence (or of recovery from shocks) is increasing in the degree of international knowledge spillovers
- Countries have permanently divergent growth paths if and only if there are *zero* international knowledge spillovers

• A country's per capita income is proportional to variety and quality:

$$Y_{it}/L_{it} \propto M_{it}^{rac{1}{\sigma-1}} \cdot Q_{it}$$

 Quality in each country draws on domestic and international technologies, with varying levels of domestic efficiency μ_i:

$$Q_{it} \propto \mu_{it} \cdot \left(Q_{it-1}
ight)^{1-\omega} \left(Q_{t-1}^*
ight)^\omega$$

• A country's per capita income is proportional to variety and quality:

$$Y_{it}/L_{it} \propto M_{it}^{rac{1}{\sigma-1}} \cdot Q_{it}$$

 Quality in each country draws on domestic and international technologies, with varying levels of domestic efficiency μ_i:

$$Q_{it} \propto \mu_{it} \cdot \left(Q_{it-1}\right)^{1-\omega} \left(Q_{t-1}^*\right)^{\omega}$$

• μ^* of frontier countries drives global technological progress:

$$Q_{t+1}^* \propto \mu_t^* \cdot Q_t^*$$

• A country's per capita income is proportional to variety and quality:

$$Y_{it}/L_{it} \propto M_{it}^{rac{1}{\sigma-1}} \cdot Q_{it}$$

 Quality in each country draws on domestic and international technologies, with varying levels of domestic efficiency μ_i:

$$Q_{it} \propto \mu_{it} \cdot \left(Q_{it-1}\right)^{1-\omega} \left(Q_{t-1}^*\right)^{\omega}$$

• μ^* of frontier countries drives global technological progress:

$$Q_{t+1}^* \propto \mu_t^* \cdot Q_t^*$$

Comparative Statics – Transitory Shock to μ_i

Figure: Effects of a Transitory Shock to μ_i in Year 0

Comparative Statics – Transitory Shock to μ_i

Figure: Effects of a Transitory Shock to μ_i in Year 0

Comparative Statics – Transitory Shock to μ_i

Figure: Effects of a Transitory Shock to μ_i in Year 0

Comparative Statics – Permanent Shock to μ_i

Figure: Effects of Permanent Shock Starting in Year 0

Comparative Statics – Permanent Shock to μ_i

Figure: Effects of Permanent Shock Starting in Year 0

Comparative Statics – Permanent Shock to μ_i

Figure: Effects of Permanent Shock Starting in Year 0

A three part case for global growth spillovers ($\omega > 0$)

A three part case for global growth spillovers ($\omega > 0$)

Ich countries grow at similar rates despite innovation differences

8

2

1. Bigger countries innovate more ...

Figure: U.S. Patents and Employment in the Country of Origin in 2019

More people \rightarrow more researchers \rightarrow more patents

1. Bigger countries innovate more ... but don't grow faster

More people \rightarrow more researchers \rightarrow more patents $\not\rightarrow$ more growth

• Growth vs. Other Variables

A three part case for global growth spillovers ($\omega > 0$)

- **1** Rich countries grow at similar rates despite innovation differences
- ② Country level differences persist, but growth differences do not

3

2. Country differences persist in levels, but not growth

• We regress country TFP levels and growth on country and year FE:

$$y_{it} = \delta_i + \gamma_t + \epsilon_{it}$$

• We test: $H_0: \delta_i \neq 0$ for each *i*
2. Country differences persist in levels, but not growth

Table: Tests of Country Differences in TFP Levels and Growth Rates

	(1)	(2)	(3)
Dependent Variable: Log Level of TFP			
Average p-value on Country FE	0.179	0.180	0.118
Percent of Countries with p-value < 0.05	54.9%	52.8%	69.7%
Dependent Variable: Growth Rate of TFP			
Average p-value on Country FE	0.773	0.475	0.514
Percent of Countries with p-value < 0.05	2.0%	9.0%	7.9%
Year FE	\checkmark	\checkmark	\checkmark
Without Penn World Table Data Flag Countries		\checkmark	\checkmark
No Variety Adjustment			\checkmark
Observations	3978	3471	3471
Countries	102	89	89 _{18 / 4}

2. Country differences persist in levels, but not growth

Log GDP per capita, 1915-2014, 112 countries Sources: Penn World Tables; Müller, Stock, and Watson, (2022)

A three part case for global growth spillovers ($\omega > 0$)

- Ich countries grow at similar rates despite innovation differences
- ② Country level differences persist, but growth differences do not
- Since the second sec

3. Frontier country technology predicts global growth

• Motivated by the equation of motion for technology, we run the following regression for a panel of countries:

$$\ln(TFP)_{it} = (1 - \omega) \ln(TFP)_{i,t-1} + \omega \ln(TFP)_{t-1}^{OECD} + \delta_i + \epsilon_{it}$$

 $\bullet\,$ Estimates consistent with $\omega \approx 0.07$ - modest international spillovers

Table: Regressions of Q_{it} on Q_{it-1} and Q_{it-1}^*

	Unconstrained		Constrained		Bias-Corrected ω
	Coeff. on In <i>Q_{it-1}</i>	Coeff. on In Q_{it-1}^*	Coeff. on In <i>Q_{it-1}</i>	Coeff. on In Q_{it-1}^*	Consistent with the constraint
Baseline	0.931 (0.006)	0.100 (0.012)	0.925 (0.005)	0.075 (0.005)	0.071
OECD Q*	0.935 (0.007)	0.133 (0.022)	0.928 (0.006)	0.072 (0.006)	0.063
No Employment Weighting	0.923 (0.006)	0.047 (0.018)	0.926 (0.005)	0.074 (0.005)	0.061
No Variety Adjustment	0.926 (0.006)	0.081 (0.009)	0.924 (0.006)	0.076 (0.006)	0.069
With Outlier Countries	0.890 (0.007)	0.103 (0.021)	0.890 (0.007)	0.110 (0.007)	0.073

The data is from Penn World Table version 10.0. The baseline row uses U.S. TFP net of a variety adjustment as a proxy for Q*, weights countries by their employment, and excludes PWT outlier countries from the sample. The last column uses simulated data wherein μ_{it} follows an AR(1) process with country-specific intercept, serial correlation, and innovation variance. The bias-corrected ω is the one that generates the constrained empirical OLS $\hat{\omega}$ when OLS estimation is carried out on simulated data. A three part case for global growth spillovers ($0 < \omega < 1$)

- Ich countries grow at similar rates despite innovation differences
- ② Country level differences persist, but growth differences do not
- Since the second sec

Cross-Country Regressions of GDP on Temperature

• Levels: 1°C increase associated with -8.2% lower GDP per capita

• s.e. = 1.1,
$$R^2 = 0.28$$
, N = 156

Growth rates: 1°C increase associated with -0.027% lower avg. annual growth
s.e. = 0.018, R² = 0.015, N = 134

Summary

- Our model presents a mechanism for interconnected-global growth.
- Three types of general evidence support the notion that country growth rates do not diverge.
- Cross-sectional correlations of GDP levels and growth rates and temperature are consistent with level effects but not growth effects.
- However, cross-country regreesions have weaknesses, so we turn to panel evidence.
- Remember two key estimates for later reference: ω =0.07 and 1°C is associated with 8.2% real GDP per capita.

Outline

2 Are Country Growth Rates Connected?

3 Panel Estimates

Projections

• Goal: empirical estimates to project long-run effects of steadily rising temperatures on GDP

- Goal: empirical estimates to project long-run effects of steadily rising temperatures on GDP
- Possible ways to estimate the relevant effects with the data at hand:

- Goal: empirical estimates to project long-run effects of steadily rising temperatures on GDP
- Possible ways to estimate the relevant effects with the data at hand:
 - Cross-sectional country-level regressions.
 - Advantage: Captures long-run effects, incorporates adaptation.
 - Disadvantage: Omitted variable bias, including bad controls, no medium-run effects

- Goal: empirical estimates to project long-run effects of steadily rising temperatures on GDP
- Possible ways to estimate the relevant effects with the data at hand:
 - Cross-sectional country-level regressions.
 - Advantage: Captures long-run effects, incorporates adaptation.
 - Disadvantage: Omitted variable bias, including bad controls, no medium-run effects
 - Time-series regressions
 - Advantage: Directly measures effects of temperature shocks over time
 - Disadvantage: other trends in GDP, most temperature variation is temporary and small

- Approach pioneered by Dell, Jones, and Olken (2012)
 - Exploit year-to-year variation in panel data with fixed effects

- Approach pioneered by Dell, Jones, and Olken (2012)
 - Exploit year-to-year variation in panel data with fixed effects

• Burke, Hsiang, and Miguel (BHM) version:

 $\Delta y_{it} = \beta_1 T_{it} + \beta_2 T_{it}^2 + \text{fixed effects} + \text{controls} + \eta_{it},$

- Regress GDP growth Δy on temperature level T
- Include nonlinear effects of temperature
- Controls are precipitation and country-specific quadratic trends

• Many challenges of using panel data

- Many challenges of using panel data
 - Level vs. growth effects
 - 2 Modeling nonlinear temperature effects
 - Stimating dynamic causal effects of temperature on GDP
 - Need to identify shocks
 - Shocks with temporary vs. permanent effects
 - Proper scaling of estimates to make projections

1. Level vs. Growth Effects

• Consider a simple time series model of temperature and growth:

$$\Delta y_t = \lambda + \rho \Delta y_{t-1} + \beta T_t + \theta_1 T_{t-1} + \theta_2 T_{t-2} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_\eta^2)$$

1. Level vs. Growth Effects

• Consider a simple time series model of temperature and growth:

$$\Delta y_t = \lambda + \rho \Delta y_{t-1} + \beta T_t + \theta_1 T_{t-1} + \theta_2 T_{t-2} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_\eta^2)$$

- Transitory effect of T on growth $\Rightarrow \theta_1 = -\beta(1+\rho)$ and $\theta_2 = \beta\rho$
 - **Sign reversal**: coefficients on lagged temperature reverse the previous GDP effect

1. Level vs. Growth Effects

• Consider a simple time series model of temperature and growth:

$$\Delta y_t = \lambda + \rho \Delta y_{t-1} + \beta T_t + \theta_1 T_{t-1} + \theta_2 T_{t-2} + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_\eta^2)$$

- Transitory effect of T on growth $\Rightarrow \theta_1 = -\beta(1+\rho)$ and $\theta_2 = \beta\rho$
 - **Sign reversal**: coefficients on lagged temperature reverse the previous GDP effect
 - $\bullet~$ BHM model excludes lags $\rightarrow~$ constrains the model to have growth effects

1. Levels vs. Growth Effects (continued)

- Our Monte Carlo demonstrates that **omitting lags biases the estimates** in favor of growth effects
- Demonstration in actual data
 - Use Burke, Hsiang, and Miguel (BHM) model in which growth depends on a quadratic in temperature
 - Estimate on our new panel data
 - Compare cumulative impact with/without lags of temperature included

Common Literature Specification with and without Lags

Figure: Estimated Cumulative Marginal Effects in BHM Model: Effects of Adding Lags of Temperature

Solid dots indicate that estimate is statistically different from zero at the 90% level.

• BHM estimate the following quadratic model in temperature:

$$\Delta y_{it} = \beta_1 T_{it} + \beta_2 T_{it}^2 + \text{fixed effects} + \eta_{it}$$

• BHM estimate the following quadratic model in temperature:

$$\Delta y_{it} = \beta_1 T_{it} + \beta_2 T_{it}^2 + \text{fixed effects} + \eta_{it}$$

- Problems with this functional form
 - Source of identification is not strictly "within group"
 - Implicitly introduces multiple nonlinear terms in the temperature shock

• BHM estimate the following quadratic model in temperature:

 $\Delta y_{it} = \beta_1 T_{it} + \beta_2 T_{it}^2 + \text{fixed effects} + \eta_{it}$

- Problems with this functional form
 - Source of identification is not strictly "within group"
 - Implicitly introduces multiple nonlinear terms in the temperature shock
- Our nonlinear alternative: state-dependent model
 - The effect of temperature shock depends on country's average temperature
 - Fits the data better and avoids quadratic model problems

Projections

3. Estimating Dynamic Causal Effects

• Key Challenges:

- Key Challenges:
 - Temperature is serially correlated so using temperature itself as the treatment confounds current and past temperature effects
 - \rightarrow need to identify shocks to temperature

- Key Challenges:
 - Temperature is serially correlated so using temperature itself as the treatment confounds current and past temperature effects

 \rightarrow need to identify shocks to temperature

• Temperature shocks contain transitory and permanent components

- Key Challenges:
 - Temperature is serially correlated so using temperature itself as the treatment confounds current and past temperature effects

 \rightarrow need to identify shocks to temperature

- Temperature shocks contain transitory and permanent components
- Must account for the dynamic response of **both** temperature and GDP to the temperature shock to make projections
 - \rightarrow use cumulative response ratio (like a cumulative multiplier)

- Key Challenges:
 - Temperature is serially correlated so using temperature itself as the treatment confounds current and past temperature effects

 \rightarrow need to identify shocks to temperature

- Temperature shocks contain transitory and permanent components
- Must account for the dynamic response of **both** temperature and GDP to the temperature shock to make projections
 - \rightarrow use cumulative response ratio (like a cumulative multiplier)
- Our Strategy: State-dependent Local Projections Model

Data

- Global Meteorological Forcing Temperature dataset
 - $\bullet\,$ Global grid at $0.25^\circ\,$ by $0.25^\circ\,$ resolution
 - Population-weighted to the country level
 - Annual, 1950-2015
- World Development Indicators for constant LCU GDP Per Capita
 - Annual, 1960-2019
- TFP (in PPP terms) from Penn World Tables

Identifying Causal Effects of Temperature

- Identify the temperature shock as the innovation from an AR(p) where the parameters depend on country mean temperature.
- Assume that a country's GDP does not directly affect its temperature.
- Control for either year fixed effects or frontier TFP and global GDP in our GDP equations.
- Estimated shock contains both weather and climate shocks, idiosyncratic country and global temperature shocks.
 - Estimates must be scaled to account for the fact that shock also has persistent effects on temperature.
 - We focus on IRFs from longer horizons to isolate the medium and long-run effects.

Econometric Model: Estimation of Temperature Shock

Estimate a temperature shock *τ_{it}* as the innovation to temperature, allowing differences by country temperature:

$$T_{it} = \sum_{j=1}^{p} \gamma_j T_{i,t-j} + \sum_{j=1}^{p} \theta_j T_{i,t-j} \cdot \overline{T_i} + \mu_i + \mu_t + \tau_{it}$$

- T_{it} is temperature in country i in year t
- $\overline{T_i}$ is country mean (or initial) temperature
- μ_i are country fixed effects
- μ_t are year fixed effects or global TFP and GDP controls
- p is the number of lags included.

Econometric Model: Estimation of IRFs

• State-dependent local projections:

$$T_{i,t+h} = \alpha_0^h \boldsymbol{\tau_{it}} + \alpha_1^h \boldsymbol{\tau_{it}} \cdot \overline{T_i} + X_{it} + \zeta_{it}, \quad h = 1, ..., H.$$

where
$$X_{it} = \{T_{i,t-j}, T_{i,t-j} \cdot \overline{T_i}\}_{j=1}^p, \mu_i, \mu_t.$$

$$y_{i,t+h} - y_{i,t-1} = \beta_0^h \tau_{it} + \beta_1^h \tau_{it} \cdot \overline{T_i} + Z_{it} + \epsilon_{it}, \quad h = 0, ..., H.$$

where
$$Z_{it} = \{T_{i,t-j}, T_{i,t-j} \cdot \overline{T_i}, \Delta y_{i,t-j}\}_{j=1}^p, \mu_i, \mu_t$$

Alternative Model for Robustness Checks

- Inspired by Berg, Curtis, and Mark's (2021, 2023) study of heterogeneity of country responses to temperature
- Estimate the time series model country-by-country
 - Allows country-specific coefficients on temperature, global controls, and lag coefficients
- Create cross-country dataset of the estimated IRFs
- Regress estimated IRFs on country characteristics, such as average temperature.
Effect of a Temperature Shock on GDP

Temperature Shock Persists Too

Figure: Persistence of a 1°C Temperature Shock In Hot Countries

Temperature Shock Persists Too

Figure: Persistence of a 1°C Temperature Shock By Long-Run Average Temperature

Both Temperature and GDP Effects of a Shock Persist

Figure: Persistent Effects of a 1°C Temperature Shock By Long-Run Average Temperature

Both Temperature and GDP Effects of a Shock Persist

Figure: Persistent Effects of a 1°C Temperature Shock By Long-Run Average Temperature

Specification includes Year FE

Both Temperature and GDP Effects of a Shock Persist

Figure: Persistent Effects of a 1°C Temperature Shock By Long-Run Average Temperature

Specification includes control for US TFP, global GDP instead of Year FE

Medium-Run GDP Effect from a Pulse of Temperature

Figure: Cumulative Response Ratio from a 1°C Temperature Shock By Long-Run Average Temperature

Specification includes control Year FE

Medium-Run GDP Effect from a Pulse of Temperature

Figure: Cumulative Response Ratio from a 1°C Temperature Shock By Long-Run Average Temperature

Country-by-country specification, no Year FE

Figure: Effects on Agricultural GDP

Figure: Effects on Agricultural GDP

Figure: Effects on Non-Agricultural GDP

Figure: Effects on Non-Agricultural GDP

Figure: Average of Country-by-Country Local Projections

Table: Heterogeneous Effects of Temperature Shock on GDP Country-by-Country Local Projections Estimates

	Dependent Variable: $\beta_{GDP}^{h=0}$					
	(1)	(2)	(3)	(4)	(5)	
Country Mean Temperature	-0.096** (0.032)	-0.0042 (0.11)	-0.12** (0.044)	-0.13** (0.046)	-0.14** (0.048)	
Country Mean Temperature Squared		-0.0027 (0.0037)				
Dummy for Original OECD			-0.61 (0.54)			
Mean Agricultural Share of GDP				4.02 (2.77)		
Dummy for Poor Country in 1980					1.27 (0.74)	
Constant	1.32* (0.53)	0.69 (0.66)	1.91* (0.93)	1.36* (0.56)	1.53* (0.59)	
N	112	112	112	111	112	

Panel vs. Cross-Sectional Regression

• Recall that simple cross-country estimates $\rightarrow 1^{\circ}C \uparrow$ in temperature lowers GDP per capita by 8.2%.

Panel vs. Cross-Sectional Regression

- Recall that simple cross-country estimates $\rightarrow 1^{\circ}C \uparrow$ in temperature lowers GDP per capita by 8.2%.
- Estimates for 25° country, average response at horizons 6-9 years:
 - With year fixed effects
 - $\bullet~1^\circ C \rightarrow$ in temperature lowers GDP per capita by 12.3%
 - Without year fixed effects
 - $1^\circ C \rightarrow$ in temperature lowers GDP per capita by 6.5%

Using Empirical IRFs to Back Out ω

- $\bullet\,$ Recall that ω indexed the degree of global spillovers and persistence of growth effects
- We construct a simulation of a temperature shock with persistence to compare to the empirical IRF
- Magnitude of 1° C shock to μ_{it} calibrated to match year 0 effect
- Calibrate path of temperature following the shock to match empirical temperature IRF
 - $\bullet\,$ Search for ω that minimizes sum of squared errors between model and empirical IRF

Comparing Empirical and Model IRFs

Comparing Empirical and Model IRFs

Implications of $\omega = 0.08$

Figure: Simulated Effects of Permanent Temperature Shock Starting in Year 0

Outline

2 Are Country Growth Rates Connected?

3 Panel Estimates

Projection Approach

- Use the 10 year *cumulative response ratio* (GDP effect / temperature effect) to project long-run impact of temperature change
- CRR varies by initial temperature
 - Integrate across temperatures for each increment of warming
- Temperature projections come from BHM (2015 Nature)
 - Average over many climate models in "baseline" emissions scenario
 - $\Delta {\cal T}$ varies by country, slightly under 4°C for the world

Projection Results: India

Figure: Impact of Climate Change on Annual Income in India in 2099

Projection Results: United States

Figure: Impact of Climate Change on Annual Income in the USA in 2099

Projection Results: Sweden

Figure: Impact of Climate Change on Annual Income in Sweden in 2099

Climate Change Projections – Permanent Level Effects

Figure: Impact of Climate Change on Annual Income in 2099

Source: Example Using Our Estimated Contemporaneous Effects Only

Climate Change Projections - Permanent Growth Effects

Figure: Impact of Climate Change on Annual Income in 2099

Source: Burke, Hsiang, & Miguel (2015)

Climate Change Projections - Our Estimates

Figure: Impact of Climate Change on Annual Income in 2099

Source: Our estimates using accumulated level effect from 10 lags

Comparison to Temporary Level Effect
 Comparison to Permanent Growth Effect

Projection Summary

Table: Projected Effects of Unabated Global Warming on 2099 Income Year Fixed Effect Specification

Region	Persistent Growth Effects	Level Effects	Permanent Growth Effects
Global GDP	-11.5	-2.2	-26.6
Global Population Average	-16.4	-3.6	-58.7
Sub-Saharan Africa	-20.6	-4.8	-86.1
Middle East & North Africa	-20.1	-4.3	-82.5
Asia	-18.0	-4.0	-73.3
South & Central America	-16.1	-3.3	-74.6
North America	-9.6	-1.4	-20.0
Europe	0.6	0.4	96.6

Projection Summary

Table: Projected Effects of Unabated Global Warming on 2099 Income US TFP Control Specification

Region	Persistent Growth Effects	Level Effects	Permanent Growth Effects
Global GDP	-6.8	-1.9	-26.6
Global Population Average	-10.0	-3.1	-58.7
Sub-Saharan Africa	-13.0	-4.2	-86.1
Middle East & North Africa	-12.1	-3.7	-82.5
Asia	-11.0	-3.4	-73.3
South & Central America	-9.5	-2.8	-74.6
North America	-4.8	-1.2	-20.0
Europe	0.2	0.4	96.6

Additional Projection Caveats

- Effects on Q^*
 - Projections could be missing a common global growth effect
 - $\bullet\,$ However, $\approx\!\!0$ effects on frontier countries, depending on included countries and weights
- Effects beyond the 10-year horizon
 - Potential underestimate, but ω estimates with year FE suggest \approx 80% of effects are realized within first decade
 - $\bullet\,$ Negligible effects past first decade for ω implied by US TFP control
- Additional adaptation, technological progress, state-dependence with growth, tipping points . . .

Projections by Initial Temperature

Source: Example Using Our Estimated Contemporaneous Effects Only
Projections by Initial Temperature

Figure: Impact of Climate Change on Annual Income in 2099

Source: Our Estimates

Projections by Initial Temperature

Figure: Impact of Climate Change on Annual Income in 2099

Source: Our Estimates, Burke-Hsiang-Miguel (2015)

Conclusion

- Model & evidence suggest growth is tied together across countries
 - Temperature unlikely to have permanent country growth effects
 - Trending temperatures can still have global growth effects
- Dynamic estimates show persistent effects of temperature on GDP
 - Moderate persistence of temperature itself
- Projections suggest warming reduces global income 6-12% by 2100
 - $\bullet~\sim$ 3-5x larger than permanent level effects
 - $\bullet~\sim$ 3-4x smaller than permanent growth effects
 - Country-specific effects differ even more dramatically

EXTRA SLIDES

Other Domestic Factors Also Don't Correlate With Growth

Figure: TFP Growth vs. Human Capital, 1980-2019

Other Domestic Factors Also Don't Correlate With Growth

Other Domestic Factors Also Don't Correlate With Growth

Temperature Does Not Correlate With Growth

Figure: Average GDP Per Capita Growth vs. Temperature in Our Sample

Both Temperature and GDP Effects of a Shock Persist

Figure: Persistent Effects of a 1°C Temperature Shock By Long-Run Average Temperature

Controls for contemporaneous US TFP instead of year FE
Back

Both Temperature and GDP Effects of a Shock Persist

Figure: Persistent Effects of a 1°C Temperature Shock By Long-Run Average Temperature

Controls for contemporaneous US TFP instead of year FE

Medium-Run GDP Effect from a Pulse of Temperature

Figure: Cumulative Response Ratio from a 1°C Temperature Shock By Long-Run Average Temperature

Figure: Difference in 2099 Climate Change KNR Estimates vs. Temporary Level Effects

Source: Our dynamic estimates minus pure level effects only

Figure: Difference in 2099 Climate Change Permanent Growth Effects vs. KNR Estimates

Source: Burke-Hsiang-Miguel (2015) estimates minus our estimates