Trading Off Consumption and COVID-19 Deaths

Bob Hall, Chad Jones, and Pete Klenow

May 2020

Basic Idea

- Pandemic lasts for one year
- Notation:
- $\delta=$ elevated mortality this year due to COVID-19 if no social distancing
- $v=$ value of a year of life relative to annual consumption
- $L E=$ remaining life expectancy in years
- $\alpha=\%$ of consumption willing to sacrifice this year to avoid elevated mortality
- Key result:

$$
\alpha \approx v \cdot \delta \cdot L E
$$

Simple Calibration

- $v=$ value of a year of life relative to annual consumption
- E.g. $v=6$ from the U.S. EPA's recommended value of life \Rightarrow each life-year lost is worth 6 years of consumption
- $\delta \cdot L E=$ quantity of life years lost from COVID-19 (per person)
- $\delta=0.81 \%$ from the Imperial College London study
- LE of victims ≈ 14.5 years from the same study
- Implied value of avoiding elevated mortality

$$
\alpha \approx v \cdot \delta \cdot L E=6 \cdot 0.81 \% \cdot 14.5 \approx \mathbf{7 0 \%} \text { of consumption }
$$

Too high because of linearization

Welfare of a Person Age a

Suppose expected lifetime utility for a person of age a is

$$
V_{a}=\sum_{t=0}^{\infty} \bar{S}_{a, t} u(c)
$$

- No pure time discounting or growth in consumption for simplicity
- $u(c)=$ flow utility (including the value of leisure)
- $S_{a+1}=$ the probability a person age a survives to $a+1$
- $\bar{S}_{a, t}=S_{a+1} \cdot S_{a+2} \cdot \ldots \cdot S_{a+t}=$ the probability a person age a survives for the next t years
- $W(\lambda, \delta)$ is utilitarian social welfare (with variations λ and δ)
- In initial year, if both scale consumption by λ and raise mortality by δ_{a} at each age:

$$
\begin{aligned}
W(\lambda, \delta) & =\sum_{a} N_{a} V_{a}\left(\lambda, \delta_{a}\right) \\
& =N u(\lambda c)+\sum_{a}\left(S_{a+1}-\delta_{a+1}\right) N_{a} V_{a+1}(1,0)
\end{aligned}
$$

where

- $N=$ the initial population (summed across all ages)
- $N_{a}=$ the initial population of age a

How much are we willing to sacrifice to prevent COVID-19 deaths?

Answer using Equivalent Variation:

$$
W(\lambda, 0)=W(1, \delta)
$$

$$
\Rightarrow \quad \alpha \equiv 1-\lambda \approx \sum_{a} \omega_{a} \cdot \delta_{a+1} \cdot \widetilde{V}_{a}
$$

- $\omega_{a} \equiv N_{a} / N=$ population share of age group a
- $\widetilde{V}_{a} \equiv V_{a}(1,0) /\left[u^{\prime}(c) c\right]=$ VSL of age group a relative to annual consumption

More intuitive formulas

$$
\alpha \approx \sum_{a} \omega_{a} \cdot \delta_{a+1} \cdot v \cdot L E_{a}
$$

- $V_{a}(1,0) /\left[u^{\prime}(c) c\right]=v \cdot L E_{a}=$ the value of a year of life times remaining life years
- $v \equiv u(c) /\left[u^{\prime}(c) c\right]=$ the value of a year of life (relative to consumption)

In the case of a single person this simplifies to

$$
\alpha \approx \delta \cdot v \cdot L E
$$

Life Expectancy by Age Group

COVID-19 Mortality by Age Group

Willing to Give Up What Percent of Consumption?

Average mortality rate	- Value of Life, v -		
δ	5	6	7
Linear utility			
0.81\%	58.7	70.5	82.2
0.44\%	32.0	38.4	44.8
$u(c)=\bar{u}+\frac{c^{1-\gamma}-1}{1-\gamma} \text { with } \gamma=2$			
0.81\%	37.0	41.3	45.1
0.44\%	24.2	27.7	30.9

Points worth emphasizing

- 70.5% is the same as with a single person because of linearization
- 41% under diminishing marginal utility
- Willing to sacrifice less when rising marginal pain from lower consumption
- 28% with a lower mortality rate of 0.44% (and diminishing marginal utility)
- 28% to 41% of consumption $=\$ 12.6 \mathrm{k}$ to $\$ 18.5 \mathrm{k}$ per person, $\$ 4.1$ to $\$ 6.1$ trillion in total

Percent of Consumption to Avoid Deaths by Age (using $\delta=0.81 \%$)

Age
\% of consumption

Under 20
0.3\%

Under 30
Under 40
Under 50
Under 60
Under 65
Under 70
Under 75
Under All
3.4\% 6.2\%
1.3\%
14.0\%
22.9\%
28.0\%
34.3\%
41.3\%

Actual and Forecast Declines in GDP

- 2020Q1 GDP down 1.25\% (not annualized)
- 2020Q2 GDP forecast to fall another 10% (not annualized)
- Current forecasts say recovery will begin in 2020Q3 and last through 2022
- If so, cumulative GDP shortfall adds up to $\sim 14 \%$ of 1 year's consumption
- But not avoiding all of the 1.4 to 2.7 million deaths
- VSL \equiv Value of a Statistical Life
- Economists estimate this using revealed preference
- e.g. compensating wage differentials across risky occupations
- consistent with some voluntary social distancing
- EPA currently uses a VSL of $\$ 7.4$ million in 2006 dollars
- We divide by 40 years of remaining life and 2006 consumption per person of $\$ 31 \mathrm{k}$
- Arrive at ~ 6 times annual consumption (\$270k today given $\$ 45 \mathrm{k}$ per capita)

Mortality rates

- Imperial College London estimated 1.1\% conditional on infection (CFR or IFR)
- So 0.81% unconditional if it infects 75% with no social distancing
- Seroprevalence studies since then:
- 0.85% in New York City
- 0.58% in Indiana (the source of our 0.44% unconditional case)
- 1.1% in Spain (in line with the Imperial College London study)

Remaining Life Expectancy in Years (LE)

- We used 14.5 years
- Imperial College London age-specific mortality rates
- Age distribution of the U.S. population from the U.S. Census
- Life expectancy by age from the U.S. Social Security Administration
- Hanlon et al. (2020) adjust for comorbidities
- Lowers remaining LE of victims by about 1 year
- Our estimates become 25% to 37% of consumption

Comparison to a few other estimates

- To avoid 0.81% mortality willing to forego $\$ 6.1$ trillion of consumption
- Zingales (2020) estimated $\$ 65$ trillion
- 7.2 million deaths vs. 2.7 million in our calculation
- 50 life years remaining per victim vs. 14.5 years in our calculation
- Linear utility vs. diminishing marginal utility for us
- Greenstone and Nigam (2020) estimated $\$ 7.9$ trillion
- 1.7 million deaths vs. 2.7 million in our calculation
- \$315k value per year of life vs. $\$ 270 k$ for us
- Linear utility vs. diminishing marginal utility for us

Some additional factors one could try to incorporate

- GDP vs. consumption (see also the physical capital stock)
- Morbidity (not just mortality) from COVID-19
- Competing hazards avoided and induced by social distancing (car accidents, etc.)
- Leisure varying by age
- Lost leisure during social distancing
- Lost human capital investment during social distancing
- The poor bearing the brunt of the consumption loss

Taking into account consumption inequality

$$
\alpha \approx \delta \cdot v \cdot L E-\gamma \cdot \Delta \sigma^{2} / 2
$$

- γ governs how rapidly marginal utility diminishes
- σ is the standard deviation of log consumption across people
- See Jones and Klenow (2016) "Beyond GDP" paper

If $\gamma=2$, each 1% increase in consumption inequality lowers α by 1%

