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A Stylized facts

Fact 1: Slow growth interrupted by a burst of growth. Figure 1 in the paper,

reproduced here as Figure A1a, presents U.S. annual TFP growth in

Manufacturing, Trade and Service industries from the Bureau of Labor

Statistics (BLS) KLEMS data. The Figure shows growth accelerating from its

1988–1995 average of 0.8% per year to 2.1% per year 1996–2005, before falling

to just 0.4% per year 2006–2019. Figure A1b shows that in all non-farm private

industries, U.S. annual TFP growth accelerated from its 1948–1995 average of

1.81% per year to 2.86% per year from 1996–2005, before falling to 1.16% per

year from 2006–2018.

Figure A1: Productivity growth

(a) Manufacturing, Trade and Services

1988 - 1995 1996 - 2005 2006 - 2019

0.79%

2.11%

0.37%

(b) Non-farm private industries

1948 - 1995 1995 - 2005 2005 - 2018

1.81%

2.86%

1.16%

Source: (a) BLS KLEMS multifactor productivity series. We calculate yearly productivity
growth in two digit NAICS manufacturing, trade and service industries by adding R&D and
IP contribution to BLS MFP and then expressing the sum in labor augmenting form. We
aggregating industry growth rates using industry share of labor costs. (b) BLS multifactor
productivity series. We calculate yearly productivity growth rate by adding R&D and IP
contribution to BLS MFP and then converting the sum to labor augmenting form. Both
figures plot the average productivity growth within each subperiod. The unit is percentage
points.

Fact 2: Rising concentration. Table A1 presents the average change from

1982 to 2012 in top 20 firm concentration within 4-digit NAICS inside

Manufacturing, Retail Trade, Wholesale Trade, and Service industries,
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respectively.1 These results are from firm-level data in U.S. Census years. Top

20 concentration rose in all sectors.

Table A1: Cumulative change in concentration 1982–2012 (ppt)

MFG RET WHO SRV

Top 20 firms sales share 1982 70 29 45 21
Top 20 firms sales share 2012 74 46 57 27

Change 4 17 12 6

Source: Figure IV of Autor et al. (2020). Concentration in each industry are averages
across 4-digit industries, with the industries weighted by industry sales shares.

Table A2 displays the ratio of sales to employment of the top 20 firms relative

to smaller firms in the four sectors. The ratio increased in manufacturing but

has been stable in other sectors.

Table A2: Sales/employment of top 20 firms relative to remaining firms

MFG RET WHO SRV

1982–1992 average 1.28 1.19 2.76 1.24
2007–2012 average 1.59 1.18 2.73 1.32

Change 0.31 -0.01 -0.03 0.08

Source: Figure IV of Autor et al. (2020).

Figure A2a shows the number of establishments per firm from 1980 to 2014

in three size bins based on U.S. Census Bureau Business Dynamic Statistics.

Firms with 10,000+ employees added establishments steadily starting in the

early 1990s, when TFP growth accelerated.2

1The rise in national concentration in Table A1 contrasts with falling local concentration
documented by Rossi-Hansberg, Sarte and Trachter (2021) and ?. One explanation for the
diverging trends is that the largest firms grew by adding establishments in new locations.

2Cao, Sager, Hyatt and Mukoyama (2020) document a similar pattern in the Quarterly
Census of Employment and Wages data, and Rinz (2022) documents increasing number of
markets with at least one establishment belonging to a top 5 firm.
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Figure A2b shows the rate at which large firms added new establishments

relative to their stock of establishments. This rate can be viewed as a crude

proxy for their pace of product innovation. The largest firms experienced a

burst of establishment entry in the 1990s, which receded from 2005 onward.

Again, these broad trends dovetail with the acceleration and deceleration of

TFP growth.

Figure A2: Establishments per firm by firm size in manufacturing, trade and
service industries

(a) Establishment per firms
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(b) Establishment entry rate
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Source: U.S. Census Bureau Business Dynamic Statistics. Left-hand side panel plots
the number of establishments per firm relative to 1990 within employment bins. Right-
hand side panel shows the number of new establishments over the total number of
establishments for different firm size bins. The lines represent 10-year centered moving
average, relative to 1990.

Fact 3: Reallocation of market share toward low labor share firms.

According to Autor et al. (2020), within Manufacturing, Trade and Services

sectors, sales were reallocated to low labor share firms. Table A3 reproduces

statistics from Autor et al. (2020) showing that the “between” firm component

pushed labor share down from 1982–2012 in each of these sectors. Within-firm

labor shares actually rose in trade and services. While within-firm labor share

declined for manufacturing, the decline is small relative to the decline via the

between component.

A complementary fact which Autor et al. (2020) document is that larger

firms tend to have lower labor shares. Within four-digit industries, the
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Table A3: Cumulative change in labor share 1982–2012 (ppt)

MFG RET WHO SRV

∆
Payroll
Sales -6.73 -0.86 -0.08 0.24

Within firm -1.71 4.39 4.66 1.73
Between -4.54 -5.44 -4.59 -0.76

Source: Figure VIII in Autor et al. (2020). This
is a Melitz-Polanec (Melitz and Polanec, 2015)
decomposition of the change in the labor share. The
entry and exit margin is not reported. The unit is
percentage points. MFG, RET, WHO, and SRV stand
for manufacturing, retail, wholesale, and service.

elasticity of firm labor share with respect to firm sales averages –3.1 across

these four Census sectors.
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B Proofs and derivations

B.1 Solution of the firm’s problem

This section derives the solution to the firm problem when the economy is on

the BGP. In this case the firm profit functions πH and πL are quadratic functions

of n, the policy and value functions can be characterized in closed form. We

state the solution in the next proposition.

Proposition A1 Let us denote π̃H(S?) ≡ S?(1− 1
γ
)+(1−S?)(1− 1

∆γ
) and π̃L(S?) ≡

S?(1− ∆
γ

) + (1− S?)(1− 1
γ
). Also, we define

n̄k(S
?, z?) ≡

π̃k(S
?) + (1− z?)ψr − ψr

β

ψo
,

for k = H,L. For a given S? ∈ (0, 1) and z? ∈ (0, 1), the policy functions fk(n),

k = H,L are given by

fk(n) =

{
(1− z?)n if n ≥ n̄k(S?,z?)

1−z?

n̄k(S
?, z?) otherwise.

(A1)

Let m denote the smallest integer such that n < n̄k(S?,z?)
(1−z?)m+1 and n̄k be a shorthand

for n̄k(S?, z?). The value functions are given by

vk(n) =


(π̃kn̄k − 1

2
ψon̄

2
k − ψrz?n̄k) 1

1−β if n = n̄k

π̃kn− 1
2
ψon

2 − ψr(n̄k − (1− z?)n) + βvk(n̄k) if n < n̄k
(1−z?)

π̃kn
1−(β(1−z?))m+1

1−β(1−z?)
− 1

2
ψon

2 1−(β(1−z?)2)m+1

1−β(1−z?)2
Otherwise,

+ψrnβ
m(1− z?)m+1 + βm+1vk(n̄k)− βmψrn̄k

(A2)

for k = H,L.

Proposition A1 says that the n̄k(S?, z?) is the optimal level of n for a firm of

type k = H,L on the BGP. A firm invests just enough to hit n̄k in the next period.

If however n is too high such that even without investing (and letting n decay at
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rate z?) n̄k is not reached next period, the non-negativity constraint on R&D is

binding and the firm invests zero for m periods.

B.2 Comparative statics on equilibrium BGP

In this Section, we establish the comparative statics results in Table 1 that

summarizes how the equilibrium values S?, λ?H , λ?L, λ?, z?, and g? respond to

changes in the parameters ψo, ∆, γ, and ψr.

In all the following, we assume that the conditions (14) and (15) hold, such

that an interior balanced growth path exists (see Proposition 2).

Equilibrium concentration S?

From the paper, equation (25) shows that

S? =
φ+ (∆−1)Jφ(1−φ)

γ∆ψo

1− (∆−1)2Jφ(1−φ)
γ∆ψo

.

Taking derivatives we get

∂S?

∂ψo
= −

[1 + φ(∆− 1)] ∆−1
∆

J
γψ2

o(1−φ)φ(
1

(1−φ)φ
− (∆−1)2

γ∆
J
ψo

)2 < 0,

and
∂S?

∂γ
= −

[1 + φ(∆− 1)] ∆−1
∆

J
γ2ψo(1−φ)φ(

1
(1−φ)φ

− (∆−1)2

γ∆
J
ψo

)2 < 0.

We also directly see that ∂S?

∂ψr
= 0. Finally, using the fact that ∆−1

∆
and (∆−1)2

∆
are

both increasing functions of ∆, we also see that ∂S?

∂∆
> 0. More precisely, we

have
∂S?

∂∆
=

S? − φ
∆(∆− 1) (1 + φ(∆− 1))

(
1 + S?(∆2 − 1)

)
> 0,

because S? > φ along an interior balanced growth path.
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Equilibrium labor share in high-productivity firms λ?H

From (27) in the main text we have

λ?H = S?
1

γ
+ (1− S?) 1

γ∆
=
S?

γ

∆− 1

∆
+

1

γ∆
.

Both ψo and ψr potentially only affect λ?H through their effects on S?. As λ?H is

monotonically increasing in S?, ψo and ψr affect λ?H in exactly the same way as

they affect S?. Hence, we have

∂λ?H
∂ψo

< 0 and
∂λ?H
∂ψr

= 0.

An increases in γ decreases S? and adds an additional negative effect on λ?H

as γ directly shows up in the denominator of (27). We therefore have

unambiguously ∂λ?H/∂γ < 0.

Finally, we have

∂λ?H
∂∆

=
1

γ

[
∂S?

∂∆

(
1− 1

∆

)
− 1− S?

∆2

]
,

which is positive if and only if the following condition (A3) is satisfied:

ψoγ

J
< (2 + φ(∆− 1))φ(∆− 1). (A3)

Equilibrium labor share in low-productivity firms λ?L

Equation (28) states

λ?L = S?
∆

γ
+ (1− S?) 1

γ
=
S?

γ
(∆− 1) +

1

γ
.

As we have λ?L = ∆λ?H the signs of the comparative static effects of ψo, ψr and γ

on λ?L are the same as the ones on λ?H .
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The effect from ∆ on λ?L is given by

∂λ?L
∂∆

=
1

γ

[
∂S?

∂∆
(∆− 1) + S?

]
> 0,

which is strictly positive as ∂S?/∂∆ > 0.

Equilibrium labor share λ?

We have λ? = λ?L(1− S?) + λ?HS
? and λ?L = ∆λ?H , which imply

λ? = λ?L

(
1− S?∆− 1

∆

)
=

1

γ
(1 + S?(∆− 1))

(
1− S?∆− 1

∆

)
.

As S? is independent of ψr this shows that λ? is not impacted by ψr. For the

effect of ψo, we have

∂λ?

∂S?
= λ?H + S?

∆− 1

γ∆
− λ?L + (1− S?)∆− 1

γ
=
∂λ?

∂S?
=

(∆− 1)2

γ∆
(1− 2S?),

which leads to
∂λ?

∂ψo
=
∂λ?

∂S?
∂S?

∂ψo
=

(∆− 1)2

γ∆
(1− 2S?)

∂S?

∂ψo
.

Since S? is decreasing in ψo this implies that the aggregate labor income share

increases in ψo if and only if S? > 1/2. In terms of exogenous parameters this

condition reads
γψo
J

<
(∆2 − 1)φ(1− φ)

∆(1− 2φ)
. (A4)

The impact of γ can be established by evaluating

∂λ?

∂γ
= −λ

?

γ
+

1

γ

∂S?

∂γ
(1− 2S?)

(∆− 1)2

∆
.

Noting that
∂S?

∂γ
= −S

? − φ
γ

1 + S?(∆− 1)

1 + φ(∆− 1)
,
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we finally have

∂λ?

∂γ
= −1 + S?(∆− 1)

γ2

[
1− S?∆− 1

∆
+

(S? − φ)(1− 2S?)

1 + φ(∆− 1)

(∆− 1)2

∆

]
.

So ∂λ?

∂γ
< 0 if and only if

1− S?∆− 1

∆
+

(S? − φ)(1− 2S?)

1 + φ(∆− 1)

(∆− 1)2

∆
> 0. (A5)

Regarding the impact of ∆, we have

∂λ?

∂∆
=

1

γ∆

∂S?

∂∆
(∆− 1)2(1− 2S?) +

∆2 − 1

γ∆2
S?(1− S?),

which is positive if and only if

(S? − φ)(∆− 1)

1 + (∆− 1)S?
(1 + S?(∆2 − 1))(1− 2S?) + (∆2 − 1)S?(1− S?) > 0. (A6)

There is no simple expression of conditions (A5) and (A6) in terms of

exogenous parameters. However, these conditions are satisfied for parameters

that generate S? ≤ 1/2. Therefore, the converse of (A4) or

γψo
J
≥ (∆2 − 1)φ(1− φ)

∆(1− 2φ)
,

is a sufficient condition for labor share to decrease with γ and to increase with

∆.

Equilibrium rate of creative destruction z?

Equation (26) in the paper shows that

z? =
1

ψr
− 1− β

β
− 1

ψr

ψo
J

+ 1
γ

1− (1− φ)φ (∆−1)2

γ∆
J
ψo
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Taking derivatives of this with respect to ψo gives

∂z?

∂ψo
=

2φ(1− φ) (∆−1)2

γ∆ψo
+ φ(1− φ) (∆−1)2

γ∆ψo
J
γψo
− 1

J

ψr

(
1− (1− φ)φ (∆−1)2

γ∆
J
ψo

)2 .

This expression is positive if and only if

J(∆− 1)2

γ∆ψo

(
J

γψo
+ 2

)
>

1

φ(1− φ)
. (A7)

We also immediately see from (26) that ∂z?

∂ψr
< 0 (recall that z? > 0, so that the

term 1
ψr

multiplies a positive number) and that ∂z?

∂γ
> 0 (note that (14) ensures

that 1 > (1− φ)φ (∆−1)2

γ∆
J
ψo

).

Finally, ∂z?

∂∆
< 0 results from the fact that (∆−1)2

∆
is an increasing function of

∆ > 1.

Equilibrium growth rate g?

As g? = γz
? − 1, the effects of increases in ∆, ψo and ψr are the same are the

effects of such increases on z?. Finally, given that z? increases with γ, then the

impact of γ on g? is even more positive.
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C Extensions

C.1 CRRA preferences and CES production structure

The Cobb-Douglas model is tractable and provides analytical characterization.

In this section we lay out a general model with a CES production structure and

CRRA preferences. With a constant elasticity of substitution σ > 1, products

with higher quality or productivity have higher market shares. Also, the price

setting of a high productivity firm facing a low productivity second-best firm

may no longer be constrained and such a firm instead may simply charge the

monopoly markup σ
σ−1

.

CRRA preferences

Instead of log preferences we generalize utility to the CRRA class

U0 =
∞∑
t=0

βt
C1−θ
t − 1

1− θ
.

Then, the resulting Euler equation from household’s optimization is given by

Ct+1

Ct
= [β(1 + rt+1)]

1
θ . (A8)

Hence, the relationship between net growth rate g? and the interest rate on the

BGP is given by 1 + g? = [β(1 + r?)]
1
θ .

CES production

Instead of the Cobb-Douglas technology we assume a more general CES

technology in final production

Y =

(∫ 1

0

[q(i)y(i)]
σ−1
σ di

) σ
σ−1

. (A9)
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Here y(i) denotes the quantity and q(i) the quality of product i. This new

structure yields as demand for product i

y(i) = q(i)σ−1

(
P

p(i)

)σ
Y, (A10)

where we have the (new) aggregate price index given by

P =

(∫ 1

0

[p(i)/q(i)]1−σ di

) 1
1−σ

. (A11)

We normalize this aggregate price index again to one in each period.

Solving for the BGP in this more general model

The rest of the model is unchanged. In particular we still have two process

efficiency types and the productivity differential is captured by ∆. We now

solve for the BGP in this model.

Together with the definition of the numéraire the demand (A10) gives for

per-period profit in a line

Y P

(
P

p(i)/q(i)

)σ−1(
1− 1

µ(i)

)
. (A12)

With σ > 1 (which is the empirically relevant case we will focus on) there

is an optimal markup factor of σ
σ−1

. So depending whether the marginal cost

of the second-best firm are binding or not we have the following three cases of

markups in a line i:

1. In the case of a high type (H) facing a low type (L) second-best firm

µHL = min

{
γ∆,

σ

σ − 1

}
, (A13)
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2. In the case that both leader and second-best firm are of the same type

µHH = µLL = min

{
γ,

σ

σ − 1

}
, (A14)

3. In the case that a low type (L) facing a high type (H) second-best firm

µLH = min

{
γ

∆
,

σ

σ − 1

}
. (A15)

With the CES structure the demand for a product line i depends also on the

particular quality of this line (relative to the other lines). But because there is

no possibility to target the innovation activity to particular lines and all firms

draw repetitively in BGP from the same distribution, the quality level in line i is

uncorrelated with the identity of the leading or second-best firm (and therefore

uncorrelated with the markup). Since the law of large number applies, on the

BGP, each firm has in a given period t the same distribution of quality levels

across the different lines.

In the following let us define the “average quality” by

Qt =

(∫ 1

0

[qt(i)]
σ−1 di

) 1
σ−1

. (A16)

Since the quality of a line is independent of its markup we can write the

aggregate price index, (A11), as P = 1 = P̃t
Qt

, where

P̃t = wt

(∫ 1

0

[µ(i)/ϕ(j(i))]1−σ di

) 1
1−σ

.

On the BGP we have

P̃t =
wt
ϕL

[
(S?)

2
(µHH

∆

)1−σ
+ S?(1− S?)

(µHL
∆

)1−σ
+ S?(1− S?)µ1−σ

LH + (1− S?)2µ1−σ
LL

] 1
1−σ

.

The profit in a given line is given by (A12). The sum of profits (before overhead
cost) of a high type firm that is active in n(j) lines and is facing in a fraction S?
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of them a high second-best firm is given by3

n(j)Y

S? P̃σ−1
t(

µHHwt
ϕL∆

)σ−1

(
1− 1

µHH

)
+ (1− S?) P̃σ−1

t(
µHLwt
ϕL∆

)σ−1

(
1− 1

µHL

) = n(j)Y · π̃H

where we define π̃H to be equal to the term squared brackets. Similarly, the
sum of profits before overhead of a L-type firm having n(j) lines and facing in a
fraction S? of them a high second-best firm is

n(j)Y

S? P̃σ−1
t(

µLHwt
ϕL

)σ−1

(
1− 1

µLH

)
+ (1− S?) P̃σ−1

t(
µLLwt
ϕL

)σ−1

(
1− 1

µLL

) = n(j)Y · π̃L,

where we again define π̃L accordingly. Hence, the new firm profit functions of

H and L types relative to GDP, Y , become on the BGP:

πH(n) = nπ̃H −
1

2
ψon

2,

πL(n) = nπ̃L −
1

2
ψon

2.

A BGP is characterized as before just with these new profit functions and a

different relationship between β, r? and 1 + g? = Qt
Qt−1

(as specified in the Euler

equation).

BGP characterization

Let us again denote the value of a firm V relative to total output Y by v ≡ V/Y .

On the BGP (with h(j)? = S?, ∀j) the number of products per firm becomes the

only individual state variable and we can write v(n). All high productivity firms

then solve

vH(n) = max
n′≥n(1−z?)

{
πH(n, S?)− (n′ − n(1− z?))ψr +

1 + g?

1 + r?
vH(n′)

}
.

3Note that the Q terms cancels out since the quality distribution in each H-L combination
is identical to the aggregate Q.
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Similarly, all low productivity firms solve

vL(n) = max
n′≥n(1−z?)

{
πL(n, S?)− (n′ − n(1− z?))ψr +

1 + g?

1 + r?
vL(n′)

}
.

The household’s Euler equation yields 1+g?

1+r?
= β(1 + g?)1−θ and we have

1 + g? =
Yt
Yt−1

=
Qt

Qt−1

=
[
1 + z?(γσ−1 − 1)

] 1
σ−1 .

The two accounting equations are again

S? = n?HφJ, (A17)

n?HφJ + n?L(1− φ)J = 1. (A18)

Finally, on the BGP we must have

n?H = fH(n?H), (A19)

and

n?L = fL(n?L), (A20)

where fH(·) and fL(·) are the policy functions of the high and low types. These

equations fully characterize values of S?, z?, n?H and n?L on the BGP.

In the following we again focus on an interior BGP as defined in the main

text. The interior BGP is characterized in the following proposition.

Proposition A2 An interior BGP features a (n?H , n
?
L, S

?, z?) combination that

fulfills

φJn?H = S? and (1− φ)Jn?L + φJn?H = 1, (A21)

as well as the following research arbitrage equations for high and low
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productivity firms respectively:

ψr =
π̃H − ψon?H

β−1(1− z? + z?γσ−1)−
1−θ
σ−1 − 1 + z?

, (A22)

ψr =
π̃L − ψon?L

β−1(1− z? + z?γσ−1)−
1−θ
σ−1 − 1 + z?

. (A23)

This is a system of four equations in four unknowns which can be solved.

Derivation of expression for concentration and labor share

In this more general model with a CES production function there is now a

difference between the fraction of lines provided by high productivity firm, S?,

and the sales weight of high productivity firm in the aggregate economy which

we denote by S̃?. Total sales of a firm of high type is along the BGP

∫ n?H

0

p(i)y(i)di = n?HY

S? P̃ σ−1
t(

µHHwt
ϕL∆

)σ−1 + (1− S?) P̃ σ−1
t(

µHLwt
ϕL∆

)σ−1

 .
Sales of a firm of low type is given by

∫ n?L

0

p(i)y(i)di = n?LY

S? P̃ σ−1
t(

µLHwt
ϕL

)σ−1 + (1− S?) P̃ σ−1
t(

µLLwt
ϕL

)σ−1

 .
As a consequence, the sales share of high types in the total economy can be

written as

S̃? =
S?
[
S?
(
µHH

∆

)1−σ
+ (1− S?)

(
µHL

∆

)1−σ
]

S?
[
S?
(
µHH

∆

)1−σ
+ (1− S?)

(
µHL

∆

)1−σ
]

+ (1− S?)
[
S?µ1−σ

LH + (1− S?)µ1−σ
LL

] .
Finally, let us derive the expressions for the labor income shares with a CES
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production function. The firm level labor share of a high type is given by

λ?H =

∫ n?H
0

wl(i)di∫ n?H
0

p(i)y(i)di
=

S?µ−σHH + (1− S?)µ−σHL
S?µ1−σ

HH + (1− S?)µ1−σ
HL

. (A24)

The firm level labor share for low-type is given by

λ?L =

∫ n?L
0

wl(i)di∫ n?L
0

p(i)y(i)di
=

S?µ−σLH + (1− S?)µ−σLL
S?µ1−σ

LH + (1− S?)µ1−σ
LL

. (A25)

The aggregate labor share is the sales-weighted average of the firm labor

shares

λ? = S̃?λ?H + (1− S̃?)λ?L. (A26)

The within change in labor share is the unweighted average of the change in

within firm labor share.

φ(λ?H,1 − λ?H,0) + (1− φ)(λ?L,1 − λ?L,0)

S̃?0λ
?
H,0 + (1− S̃?0)λ?L,0

, (A27)

where 0 denotes the initial and 1 the new BGP, respectively.

C.2 General distribution of process efficiency

In this extension, we depart from the assumption that there are only two types

of firms with high vs. low level of process efficiency. Instead, we extend the

framework to haveN types of firms, whereN can be any finite positive number.

More precisely, let there be N levels of process efficiency ϕ1 > ϕ2 > · · · > ϕN

with the maximum efficiency gap ϕ1

ϕN
< γ. As in the baseline model, we assume

that the number of firms and lines are large enough so that we can consider an

equilibrium where the distribution of followers faced by each type is the same

as the share of products by each type.

Let ρ ≡ 1/β − 1 and let us denote the markup by µ(j, j′) ≡ γϕj
ϕj′

. The BGP

equilibrium consists of rate of creative destruction z? and product share of each
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type {s?j}Nj=1 that satisfy

ψr(ρ+ z?) = 1−
N∑
j′=1

s?j′

µ(j, j′)
− ψo

J

s?j
ϕj
, ∀j ∈ {1 · · ·N},

N∑
j=1

s?j = 1 and s?j > 0, ∀j ∈ {1 · · ·N}.

The first condition is just the first-order conditions for each type of firm

while the second condition says that all types of firms are active and their

product shares sum to 1.

To solve for the equilibrium, let s? denote the array of product shares

[s?1, s
?
2, · · · , s?N ]′ , ∆ denote [∆1,∆2, · · · , 1]′ where ∆j ≡ ϕj/ϕN and 1 denote

[1, 1, · · · , 1]′. We then define

A =




1
γ∆1

∆′

1
γ∆2

∆′

...
1

γ∆N
∆′

+
ψo
J


1
ϕ1

0 · · · 0

0 1
ϕ2
· · · 0

...
...

. . .
...

0 0 · · · 1
ϕN



−1

.

With these notations, we can solve for the equilibrium quantities s? and z?

along an interior BGP. As long as 1′A1 6= 0, the solution to the equilibrium is

given by

z? =
1′A1− 1

ψr1′A1
− ρ, z? ∈ (0, 1), (A28)

s? = A1[1− ψr(ρ+ z?)] =
A1

1′A1
, s?j ∈ (0, 1). (A29)

As in the baseline model with two types, s? does not depend on the R&D cost

ψr. The labor share of type j and the aggregate labor share are respectively given

by

µ−1
j =

∆′s?

γ∆j

, µ−1 =
∆′s?

γ

[
1

∆1

,
1

∆2

, · · · , 1

∆N

]
s?.
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D Additional comparative statics at the calibrated

BGP

D.1 Additional comparative statics

Figure A3: BGP markups and rate of creative destruction as ψo changes

0.0 0.2 0.4 0.6
S

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z

baseline

0.0 0.2 0.4 0.6
S

1.237

1.238

1.239

1.240

1.241

1.242

1.243

1.244

1.245

baseline

Note: The figure plots values for S?, z? and µ? on the BGP when ψo changes, holding fixed
other parameters at the baseline values.

Figure A4: BGP process and allocative efficiency as ψo changes
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Note: The figure plots values for detrended labor productivity Y/(QL), aggregate process
efficiency (PE), ϕL∆S? , and allocative efficiency (AE) on the BGP as ψo changes, holding
fixed other parameters at the baseline values. AE is along the BGP given by ((S?)2 + (1 −
S?)2 + S?(1− S?)∆−1 + S?(1− S?)∆)−1.
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D.2 Diminishing returns in R&D

In our calibration with changing overhead and R&D cost, a 10.5% increase in

the R&D cost parameter, ψr, accounts for about 40% of the decline in long-run

growth. We can endogenize this increase in R&D costs as stemming from

diminishing returns in research with respect to n. Suppose the cost of

innovating on x lines is given by Y ψrnνx/n. On a BGP where x/n = z? for all

firms, aggregate R&D as a share of output can be written as ψ̃rz
? where

ψ̃r = ψr[S
?nν−1

H + (1 − S?)nν−1
L ]. Higher ψ̃r means lower aggregate R&D

efficiency. Our baseline model features ν = 1 and ψ̃r = ψr. When ν > 1, R&D

intensity increases with firm size and higher S? endogenously raises ψ̃r and

lowers R&D efficiency. For example, when ν = 1.5 as in De Ridder (2021), the

observed rise in concentration from 45.9% to 58% raises ψ̃r by 51%,4 leading to

a much bigger decline in growth. We did not go this route because it would

make R&D intensity increase markedly with firm size, contrary to available

evidence.5

4We calculate the change as ψ̃1
r/ψ̃

0
r − 1 where ψ̃tr = ψ0

r [S?t n
ν−1
tH + (1− S?t )nν−1

tL ].
5According to the 2016 Business R&D and Innovation Survey (BRDIS) Table 17, R&D

intensity of firms reporting R&D declines with firm employment (3.5% for firms with 10K or
more employees vs. 5.2% for other firms). We combine BRDIS with Business Dynamics Statistics
(BDS) to estimate the share of firms that report R&D and find that unconditional R&D intensity
is 0.63% for 10K+ firms and 0.43% for the other firms. This translates to ν ≈ 1 because 10K+
firms are about 1600 times larger than the rest of the firms (2016 BDS). A caveat is that this
evidence is mostly for firms in manufacturing.

https://ncses.nsf.gov/pubs/nsf19318/assets/data-tables/tables/brdis16-dst-tab017.xlsx
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E Solving for the transition dynamics

This section lays out the numerical method used to compute the transition

dynamics in Section 5 of the main text. Let nt be the number of product a firm

holds and let ht be the share of these products where the firm faces a high

productivity second-best producer. We use mt ≡ ntht to denote the number of

products a firm holds where the firm faces a high productivity second-best

producer. The dynamic problem of a firm of type j = H,L in the main text, can

be expressed (after dividing the objective by Q0) as

max
{ns,ms}∞s=1

{πj(n0,m0)− (n1 − n0(1− z1))ψr}
Y0

Q0

(A30)

+
γz1

1 + r1

{πj(n1,m1)− (n2 − n1(1− z2))ψr}
Y1

Q1

+
γz1

1 + r1

γz2

1 + r2

{πj(n2,m2)− (n3 − n2(1− z3))ψr}
Y2

Q2

...

+
t∏

τ=1

γzτ

1 + rτ
{πj(nt,mt)− (nt+1 − nt(1− zt+1))ψr}

Yt
Qt

...

for given n0 and m0 ≡ n0h0 = n0S0, and subject to

mt = mt−1(1− zt) + St−1(nt − (1− zt)nt−1), t = 1, 2, . . . (A31)

nt ≥ nt−1(1− zt), t = 1, 2, . . . (A32)

where

πH(nt,mt) = mt

(
1− 1

γ

)
+ (nt −mt)

(
1− 1

∆γ

)
− ψo

n2
t

2
, (A33)

and

πL(nt,mt) = mt

(
1− ∆

γ

)
+ (nt −mt)

(
1− 1

γ

)
− ψo

n2
t

2
. (A34)
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The j index only shows up through profit functions (A33) and (A34) because we

start the transition dynamics from an initial BGP where h0,j = S0 for j = H,L.

As a result, only the profit functions differ between the high and low type firms.

We can iterate (A31) backward to express mt as a function of past n

mt = St−1nt +
t−1∑
a=1

(Sa−1 − Sa)na
t−a∏
b=1

(1− za+b) ∀t = 1, 2, . . . (A35)

We denote this function for mt by mt

(
{ns}ts=1

)
.

We can then derive the derivative ofmt+k with respect to nt (we suppress the

j subscript since the expression is the same for the two types)

∂mt+k({ns}t+ks=1)

∂nt
=


0 if k < 0

St−1 if k = 0

(St−1 − St)
∏k

b=1(1− zt+b) if k > 0.

(A36)

This is the effect of increasing the number of products in period t by one unit

on the number of products facing a high type second-best firm in period t + k

(while holding the number of product in all other periods constant). Adding

a product in t adds (1 − zt+1) products in t + 1. Product acquisition through

innovation xt+1 therefore needs to drop by (1 − zt+1) to keep nt+1 constant. All

other xτ for τ > t+ 2 are then unchanged.

What is the effect onmt+k? Adding a product in t adds St−1(1−zt+1) products

with a high-type follower in t+1 while lowering xt+1 by (1−zt+1) in t+1 reduces

high type follower by St(1− zt+1). The net effect on mt+1 is (St−1 − St)(1− zt+1).

This change decays at the rate of creative destruction, which is captured by the∏k
b=1(1 − zt+b) term. Hence what matters for mt+k, k > 0 is the change in the

composition of the pool from which the additional product is drawn from, i.e.,

the difference between St and St−1. If St = St−1, an increase in nt has no effect

on mt+k for k > 0. If St > St−1, the change reduces the number of products with

high-type followers. Vice versa for St < St−1.
Substituting (A36) into (A33) and (A34) and taking derivatives with respect
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to n yields

∂πt+k,H(nt+k,mt+k({ns}t+ks=1))

∂nt
=


0 if k < 0

1−∆
∆γ St−1 + 1− 1

∆γ − ψont if k = 0
1−∆
∆γ (St−1 − St)

∏k
b=1(1− zt+b) if k > 0

(A37)

and

∂πt+k,L(nt+k,mt+k({ns}t+ks=1))

∂nt
=


0 if k < 0

1−∆
γ St−1 + 1− 1

γ − ψont if k = 0
1−∆
γ (St−1 − St)

∏k
b=1(1− zt+b) if k > 0.

(A38)

It is useful to rewrite the objective function in (A30) before taking first-order

conditions. First, we use the Euler equation for the household’s problem to

express the discount factors as

b∏
t=a

γzt

1 + rt
= βb−a+1ya−1ca−1

ybcb
,

where yt ≡ Yt/Qt and ct denotes consumption share of output Ct/Yt. This

consumption share can be expressed as

ct ≡
Ct
Yt

= 1− Ot

Yt
− Zt
Yt

(A39)

= 1−
(
φn2

tH + (1− φ)n2
tL

) ψoJ
2
− ψrzt+1

= 1−
(
S2
t

φ
+

(1− St)2

1− φ

)
ψo
2J
− ψrzt+1 = c(St, zt+1).

Substituting this expression into the objective function (A30), dividing by y0

and rearranging allows us to express the problem of a firm of type j = H,L as

max
{ntj}∞t=1

πj(n0j,m0j) + n0j(1− z1)ψr (A40)

+
∞∑
t=1

βt
c0

ct

{
πj(ntj,mt({nsj}ts=1)) + ψrntj

[
(1− zt+1)− ct

ct−1β

]}
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subject to

ntj ≥ nt−1,j(1− zt), t = 1, 2, . . . (A41)

Using Λtj to denote the Lagrangian multiplier on constraint (A41), the

first-order conditions of the (A40) with respect to ntj, t > 0 are

∂πj(ntj,mt({nsj}ts=1))

∂ntj
+ Λtj − Λt+1,j(1− zt+1) (A42)

= ψr

[
ct

ct−1β
− (1− zt+1)

]
+ fj

1−∆

∆γ
(St − St−1)

∞∑
a=t+1

βa−t
ct
ca

a−t∏
b=1

(1− zt+b)

and

Λtj ≥ 0, ntj ≥ nt−1,j(1− zt), Λtj(ntj − nt−1,j(1− zt)) = 0,

where fj = ∆ if j = L and fj = 1 otherwise.

We will solve two such “representative” firm problem, one for theH type and

one for the L type. First, we rewrite (A42) in an iterative format. Define

dt ≡
∞∑

a=t+1

βa−t
ct
ca

a−t∏
b=1

(1− zt+b). (A43)

One can show that

dt = β(1− zt+1)
ct
ct+1

(1 + dt+1). (A44)

Replacing ntH = St
φJ

and ntL = 1−St
(1−φ)J

in (A37) and (A38) allows us to write

∂πH(ntH ,mt({nsH}ts=1))

∂ntH
= St−1

1−∆

γ∆
+ 1− 1

∆γ
− ψo

St
φJ
≡ ∂πH
∂ntH

(St−1, St) (A45)

and

∂πL(ntL,mt({nsL}ts=1))

∂ntL
= St−1

1−∆

γ
+ 1− 1

γ
− ψo

1− St
(1− φ)J

≡ ∂πL
∂ntL

(St−1, St). (A46)

Substituting (A44) to (A46) into (A42) yields the following set of equations for



27

each period t > 0

∂πH
∂ntH

(St−1, St) + ΛtH − Λt+1,H(1− zt+1) = ψr

[
ct

ct−1β
− (1− zt+1)

]
+

(1−∆)(St − St−1)dt
∆γ

, (A47)

∂πL
∂ntL

(St−1, St) + ΛtL − Λt+1,L(1− zt+1) = ψr

[
ct

ct−1β
− (1− zt+1)

]
+

(1−∆)(St − St−1)dt
γ

, (A48)

dt = dt−1
1

β(1− zt)
ct
ct−1

− 1, (A49)

ht,H = (ht−1,H − St−1)
St−1

St
(1− zt) + St−1, (A50)

ht,L = (ht−1,L − St−1)
1− St−1

1− St
(1− zt) + St−1, (A51)

and

Λtj ≥ 0, ntj ≥ nt−1,j(1− zt), Λtj(ntj − nt−1,j(1− zt)) = 0, j = H,L. (A52)

Note that equations (A50) and (A51) use the equilibrium condition that nt−1,H

ntH
=

St−1

St
and nt−1,L

ntL
= 1−St−1

1−St .

Forward iteration algorithm

Given (dt−1, zt, St−1, ht−1,H , ht−1,L) and the Λjs, equations (A47) to (A51)

determine (dt, zt+1, St, htH , htL). First, we guess that both types of firms have

interior solution, i.e., Λtj,Λt+1,j = 0 for j = L,H. Then, we can multiply (A47)

by ∆ and subtract (A48) to eliminate the dt term on the RHS. This yields

∆− 1−∆ψo
St
φJ

+ ψo
1− St

(1− φ)J
= (∆− 1)ψr

[
ct

ct−1β
− (1− zt+1)

]
. (A53)
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Substituting in c(St, zt+1) from (A39) yields

ct−1β

(∆− 1)ψr

[
∆− 1−∆ψo

St
φJ

+ ψo
1− St

(1− φ)J

]
=

[
1−

(
S2
t

φ
+

(1− St)2

1− φ

)
ψo
2J
− ct−1β + (ct−1β − ψr)zt+1

]

zt+1 =

ct−1β
(∆−1)ψr

[
∆− 1−∆ψo

St
φJ

+ ψo
1−St

(1−φ)J

]
−
[
1−

(
S2
t

φ
+ (1−St)2

1−φ

)
ψo
2J
− ct−1β

]
ct−1β − ψr

≡ z(St, St−1, zt)

We can substitute z(St, St−1, zt) into (A47) to derive an equation with St as the

only unknown

∂πH
∂ntH

(St−1, St) =
∆ ∂πH
∂ntH

(St−1, St)− ∂πL
∂ntL

(St−1, St)

∆− 1

+
1−∆

∆γ
(St − St−1)

(
dt−1

β(1− zt)
c(St, z(St, St−1, zt))

ct−1

− 1

)
.

This is a quadratic function that solves for St. We choose the solution that is

between 0 and 1. When there are multiple solutions within 0 and 1, we choose

one that satisfy the interiority assumption and yields zt between 0 and 1.
We check the interiority condition in the following way. For the calibrated

parameters, where the high type increase their market share, the H types firms
have higher returns to innovate that low type firms. Hence positive zt means
the high type has positive R&D. We only need to worry about the case when
the low type does not innovate. For each period t, we first guess that the low
type does innovate and solve for the low types innovation. If the innovation
turns out to be less than zero, we set the value to zeros. This implies that St =

1− (1− zt)(1− St−1). Substituting this into (A47) yields

St−1
1−∆

γ∆
+1− 1

∆γ
−ψo

1− (1− zt)(1− St−1)

φJ
= ψr

[
ct

ct−1β
− (1− zt+1)

]
+

1−∆

∆γ
zt(1−St−1)dt.

This equation solves for zt+1.

We initiate the algorithm with a guess for (z1, d0) and set S0 = h0,H = h0,L =

S?old. The algorithm has an outer loop and an inner loop. The inner loop holds
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d0 fixed and iterates on z1. It iterates on (A47) to (A51) until St is close to the new

BGP S?new. Then it uses bisection to update the guess of z1. It increases z1 if the

last value of z is lower than the new BGP z?new and reduce z1 otherwise.

The inner loop yields a path of (zt+1, St) that converges to (z?new, S
?
new) holding

fixed d0. However, the implied path of dt that may not converge to the BGP value

of d?new ≡
β(1−z?new)

1−β(1−z?new)
. The outer loop uses bisection to update d0 until dt also

converges. It reduces d0 if the inner loop overshoots and increases d0 otherwise.

We stop the algorithm when (dt, zt+1, St) approximately converges to the

new balanced growth path. Suppose this happens after T periods. Then we set

(dt, zt+1, St) for t > T to their new BGP values and iterate forward until

(ht,H , ht,L) converges to the new BGP. We do not keep on iterating on

(dt, zt+1, St) until (ht,H , ht,L) converges because (A49) is not stable outside of its

fixed point. Since machine precision does not allow the algorithm to reach the

exact fixed point, dt eventually explodes as we iterate forward.

Effect of changes in ψr

Since ψr affects both types of firms in the same way (see (A47) and (A48)), we

guess that St = S?old for all t > 0 and the economy jumps to the new balanced

growth path in period 0. Substituting this guess into the first-order conditions

and using ∂πH
∂ntH

(S?old, S
?
old) = ∂πL

∂ntL
(S?old, S

?
old), we can pin down zt, t ≥ 1 by

ψr,old

[
1

β
− (1− zold)

]
= ψr,new

[
1

β
− (1− znew)

]
,

cnew = cold + (ψr,new − ψr,old)
[

1

β
− 1

]
,

d0 = d?new =
β(1− z?new)

1− β(1− z?new)
,

ht,H = S?old, ht,L = S?old.

That is, an increase in innovation cost ψr lowers the rate of creative destruction

and increases the share of consumption.
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